Jody Groenendyk

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11502324/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Calreticulin and the Heart. Cells, 2022, 11, 1722.	4.1	6
2	Calcium signaling and endoplasmic reticulum stress. International Review of Cell and Molecular Biology, 2021, 363, 1-20.	3.2	61
3	Binding Proteins Ca2+ Binding/Buffering Proteins: ER Luminal Proteins. , 2021, , 534-546.		4
4	Selective enhancement of cardiomyocyte efficiency results in a pernicious heart condition. PLoS ONE, 2020, 15, e0236457.	2.5	3
5	Endoplasmic reticulum and the microRNA environment in the cardiovascular system. Canadian Journal of Physiology and Pharmacology, 2019, 97, 515-527.	1.4	3
6	Two pools of IRE1Î \pm in cardiac and skeletal muscle cells. FASEB Journal, 2019, 33, 8892-8904.	0.5	22
7	Tauroursodeoxycholic acid attenuates cyclosporine-induced renal fibrogenesis in the mouse model. Biochimica Et Biophysica Acta - General Subjects, 2019, 1863, 1210-1216.	2.4	4
8	Interactome Screening Identifies the ER Luminal Chaperone Hsp47 as a Regulator of the Unfolded Protein Response Transducer IRE1α. Molecular Cell, 2018, 69, 238-252.e7.	9.7	127
9	Cyclosporine A binding to COX-2 reveals a novel signaling pathway that activates the IRE11 \pm unfolded protein response sensor. Scientific Reports, 2018, 8, 16678.	3.3	16
10	Calsequestrin, a new modulator of unfolded protein response in skeletal and cardiac muscle. FASEB Journal, 2018, 32, 652.7.	0.5	0
11	Fatty acid binding protein (Fabp) 5 interacts with the calnexin cytoplasmic domain at the endoplasmic reticulum. Biochemical and Biophysical Research Communications, 2017, 493, 202-206.	2.1	9
12	Inhibition of the Unfolded Protein Response Mechanism Prevents Cardiac Fibrosis. PLoS ONE, 2016, 11, e0159682.	2.5	50
13	The Endoplasmic Reticulum Chaperone Calnexin Is a NADPH Oxidase NOX4 Interacting Protein. Journal of Biological Chemistry, 2016, 291, 7045-7059.	3.4	60
14	Ces3/TGH Deficiency Attenuates Steatohepatitis. Scientific Reports, 2016, 6, 25747.	3.3	33
15	Calreticulin secures calcium-dependent nuclear pore competency required for cardiogenesis. Journal of Molecular and Cellular Cardiology, 2016, 92, 63-74.	1.9	11
16	Glycoprotein Quality Control and Endoplasmic Reticulum Stress. Molecules, 2015, 20, 13689-13704.	3.8	80
17	UBC9-dependent Association between Calnexin and Protein Tyrosine Phosphatase 1B (PTP1B) at the Endoplasmic Reticulum. Journal of Biological Chemistry, 2015, 290, 5725-5738.	3.4	20
18	Unfolding the complexities of ER chaperones in health and disease: report on the 11th international calreticulin workshop. Cell Stress and Chaperones, 2015, 20, 875-883.	2.9	15

JODY GROENENDYK

#	Article	IF	CITATIONS
19	Systems biology surveillance decrypts pathological transcriptome remodeling. BMC Systems Biology, 2015, 9, 36.	3.0	2
20	IL-28B is a Key Regulator of B- and T-Cell Vaccine Responses against Influenza. PLoS Pathogens, 2014, 10, e1004556.	4.7	108
21	Genome-wide analysis of thapsigargin-induced microRNAs and their targets in NIH3T3 cells. Genomics Data, 2014, 2, 325-327.	1.3	3
22	Disrupted WNT Signaling in Mouse Embryonic Stem Cells in the Absence of Calreticulin. Stem Cell Reviews and Reports, 2014, 10, 191-206.	5.6	15
23	Endoplasmic reticulum stress associated responses in cancer. Biochimica Et Biophysica Acta - Molecular Cell Research, 2014, 1843, 2143-2149.	4.1	163
24	Human structural proteome-wide characterization of Cyclosporine A targets. Bioinformatics, 2014, 30, 3561-3566.	4.1	38
25	Interplay Between the Oxidoreductase PDIA6 and microRNA-322 Controls the Response to Disrupted Endoplasmic Reticulum Calcium Homeostasis. Science Signaling, 2014, 7, ra54.	3.6	92
26	Coping with Endoplasmic Reticulum Stress in the Cardiovascular System. Annual Review of Physiology, 2013, 75, 49-67.	13.1	148
27	Calreticulin signaling in health and disease. International Journal of Biochemistry and Cell Biology, 2012, 44, 842-846.	2.8	162
28	Cardiovascular Disease and Endoplasmic Reticulum Stress. , 2012, , 339-355.		1
29	Role of cysteine amino acid residues in calnexin. Molecular and Cellular Biochemistry, 2012, 359, 271-281.	3.1	8
30	Mutational analysis of calnexin. Biochimica Et Biophysica Acta - Biomembranes, 2011, 1808, 1435-1440.	2.6	3
31	Modulation of STIM1 and capacitative Ca ²⁺ entry by the endoplasmic reticulum luminal oxidoreductase ERp57. EMBO Reports, 2011, 12, 1182-1188.	4.5	101
32	Ca2+-Signaling, Alternative Splicing and Endoplasmic Reticulum Stress Responses. Neurochemical Research, 2011, 36, 1198-1211.	3.3	30
33	A Genome-Wide siRNA Screen Identifies Novel Phospho-enzymes Affecting Wnt/β-Catenin Signaling in Mouse Embryonic Stem Cells. Stem Cell Reviews and Reports, 2011, 7, 910-926.	5.6	6
34	ERp57 Modulates STAT3 Signaling from the Lumen of the Endoplasmic Reticulum. Journal of Biological Chemistry, 2010, 285, 6725-6738.	3.4	97
35	Calnexin Deficiency Leads to Dysmyelination. Journal of Biological Chemistry, 2010, 285, 18928-18938.	3.4	62
36	Biology of Endoplasmic Reticulum Stress in the Heart. Circulation Research, 2010, 107, 1185-1197.	4.5	266

JODY GROENENDYK

#	Article	IF	CITATIONS
37	Calreticulin, a multi-process calcium-buffering chaperone of the endoplasmic reticulum. Biochemical Journal, 2009, 417, 651-666.	3.7	600
38	Endoplasmic reticulum stress in the absence of calnexin. Cell Stress and Chaperones, 2008, 13, 497-507.	2.9	46
39	Identification by Mutational Analysis of Amino Acid Residues Essential in the Chaperone Function of Calreticulin. Journal of Biological Chemistry, 2006, 281, 2338-2346.	3.4	60
40	Endoplasmic reticulum quality control and apoptosis. Acta Biochimica Polonica, 2005, 52, 381-95.	0.5	67
41	Calreticulin, Ca2+, and calcineurin - signaling from the endoplasmic reticulum. Molecules and Cells, 2004, 17, 383-9.	2.6	91
42	ERp19 and ERp46, New Members of the Thioredoxin Family of Endoplasmic Reticulum Proteins. Molecular and Cellular Proteomics, 2003, 2, 1104-1119.	3.8	107
43	Identification of an N-domain Histidine Essential for Chaperone Function in Calreticulin. Journal of Biological Chemistry, 2003, 278, 50645-50653.	3.4	70