Jason M Tylianakis

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1150200/publications.pdf Version: 2024-02-01

		31976	22832
113	15,726	53	112
papers	citations	h-index	g-index
127	127	127	16690
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Conservation needs to integrate knowledge across scales. Nature Ecology and Evolution, 2022, 6, 118-119.	7.8	40
2	Potential for cascading impacts of environmental change and policy on indigenous culture. Ambio, 2022, 51, 1110-1122.	5.5	6
3	Effective climate change adaptation means supporting community autonomy. Nature Climate Change, 2022, 12, 213-215.	18.8	39
4	The recovery of functional diversity with restoration. Ecology, 2022, 103, e3618.	3.2	6
5	A network perspective for sustainable agroecosystems. Trends in Plant Science, 2022, 27, 769-780.	8.8	11
6	Social–ecological connections across land, water, and sea demand a reprioritization of environmental management. Elementa, 2022, 10, .	3.2	6
7	Behaviour moderates the impacts of foodâ€web structure on species coexistence. Ecology Letters, 2021, 24, 298-309.	6.4	7
8	Tricky partners: native plants show stronger interaction preferences than their exotic counterparts. Ecology, 2021, 102, e03239.	3.2	14
9	Effects of customary egg harvest regimes on hatching success of a culturally important waterfowl species. People and Nature, 2021, 3, 499-512.	3.7	3
10	Consistent tradeâ€offs in ecosystem services between land covers with different production intensities. Biological Reviews, 2021, 96, 1989-2008.	10.4	6
11	Exotic plants accumulate and share herbivores yet dominate communities via rapid growth. Nature Communications, 2021, 12, 2696.	12.8	9
12	Predicting direct and indirect non-target impacts of biocontrol agents using machine-learning approaches. PLoS ONE, 2021, 16, e0252448.	2.5	4
13	International scientists formulate a roadmap for insect conservation and recovery. Nature Ecology and Evolution, 2020, 4, 174-176.	7.8	176
14	Trait matching and phenological overlap increase the spatioâ€ŧemporal stability and functionality of plant–pollinator interactions. Ecology Letters, 2020, 23, 1107-1116.	6.4	58
15	Biotic interactions drive ecosystem responses to exotic plant invaders. Science, 2020, 368, 967-972.	12.6	59
16	Strength of niche processes for species interactions is lower for generalists and exotic species. Journal of Animal Ecology, 2020, 89, 2145-2155.	2.8	21
17	Asymmetric interactions of seedâ€predation network contribute to rareâ€species advantage. Ecology, 2020, 101, e03050.	3.2	9
18	Engaging Indigenous Peoples and Local Communities in Environmental Management Could Alleviate Scale Mismatches in Social–Ecological Systems, BioScience, 2020, 70, 699-707	4.9	19

#	Article	IF	CITATIONS
19	Climatic and local stressor interactions threaten tropical forests and coral reefs. Philosophical Transactions of the Royal Society B: Biological Sciences, 2020, 375, 20190116.	4.0	69
20	The patchwork of evolutionary landscapes. Nature Ecology and Evolution, 2020, 4, 672-673.	7.8	1
21	Communityâ€level direct and indirect impacts of an invasive plant favour exotic over native species. Journal of Ecology, 2020, 108, 2499-2510.	4.0	12
22	Building biocultural approaches into Aotearoa – New Zealand's conservation future. Journal of the Royal Society of New Zealand, 2019, 49, 394-411.	1.9	40
23	Predation risk influences foodâ€web structure by constraining species diet choice. Ecology Letters, 2019, 22, 1734-1745.	6.4	26
24	Reshaping our understanding of species' roles in landscapeâ€scale networks. Ecology Letters, 2019, 22, 1367-1377.	6.4	37
25	Biocultural Hysteresis Inhibits Adaptation to Environmental Change. Trends in Ecology and Evolution, 2019, 34, 771-780.	8.7	58
26	Distance to range edge determines sensitivity to deforestation. Nature Ecology and Evolution, 2019, 3, 886-891.	7.8	33
27	Organic farming promotes biotic resistance to foodborne human pathogens. Journal of Applied Ecology, 2019, 56, 1117-1127.	4.0	34
28	Above and belowground community strategies respond to different global change drivers. Scientific Reports, 2019, 9, 2540.	3.3	23
29	Extinction filters mediate the global effects of habitat fragmentation on animals. Science, 2019, 366, 1236-1239.	12.6	164
30	Bringing Elton and Grinnell together: a quantitative framework to represent the biogeography of ecological interaction networks. Ecography, 2019, 42, 401-415.	4.5	85
31	Symmetric assembly and disassembly processes in an ecological network. Ecology Letters, 2018, 21, 896-904.	6.4	19
32	Asymmetry in reproduction strategies drives evolution of resistance in biological control systems. PLoS ONE, 2018, 13, e0207610.	2.5	14
33	Community dynamics can modify the direction of simulated warming effects on crop yield. PLoS ONE, 2018, 13, e0207796.	2.5	1
34	Intensified agriculture favors evolved resistance to biological control. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 3885-3890.	7.1	95
35	The database of the <scp>PREDICTS</scp> (Projecting Responses of Ecological Diversity In Changing) Tj ETQq1	1 0.78431 1.9	4 rgBT /Over
36	Indigenous peoples: Conservation paradox. Science, 2017, 357, 142-143.	12.6	20

#	Article	IF	CITATIONS
37	Ecological Networks Across Environmental Gradients. Annual Review of Ecology, Evolution, and Systematics, 2017, 48, 25-48.	8.3	339
38	Nonâ€random foodâ€web assembly at habitat edges increases connectivity and functional redundancy. Ecology, 2017, 98, 995-1005.	3.2	15
39	Complementary Effects of Species Abundances and Ecological Neighborhood on the Occurrence of Fruit-Frugivore Interactions. Frontiers in Ecology and Evolution, 2017, 5, .	2.2	24
40	Predicting the effect of habitat modification on networks of interacting species. Nature Communications, 2017, 8, 792.	12.8	31
41	Species roles in plant–pollinator communities are conserved across native and alien ranges. Diversity and Distributions, 2016, 22, 841-852.	4.1	46
42	Linking species functional roles to their network roles. Ecology Letters, 2016, 19, 762-770.	6.4	119
43	Microbes in the Anthropocene: spillover of agriculturally selected bacteria and their impact on natural ecosystems. Proceedings of the Royal Society B: Biological Sciences, 2016, 283, 20160896.	2.6	25
44	Persist or Produce: A Community Trade-Off Tuned by Species Evenness. American Naturalist, 2016, 188, 411-422.	2.1	54
45	Predicting bee community responses to land-use changes: Effects of geographic and taxonomic biases. Scientific Reports, 2016, 6, 31153.	3.3	92
46	Apparent competition drives community-wide parasitism rates and changes in host abundance across ecosystem boundaries. Nature Communications, 2016, 7, 12644.	12.8	56
47	A common framework for identifying linkage rules across different types of interactions. Functional Ecology, 2016, 30, 1894-1903.	3.6	161
48	Host identity is a dominant driver of mycorrhizal fungal community composition during ecosystem development. New Phytologist, 2015, 205, 1565-1576.	7.3	173
49	Communityâ€level net spillover of natural enemies from managed to natural forest. Ecology, 2015, 96, 193-202.	3.2	53
50	Phylogenetic diversity and coâ€evolutionary signals among trophic levels change across a habitat edge. Journal of Animal Ecology, 2015, 84, 364-372.	2.8	22
51	Agricultural Intensification Exacerbates Spillover Effects on Soil Biogeochemistry in Adjacent Forest Remnants. PLoS ONE, 2015, 10, e0116474.	2.5	40
52	The <scp>PREDICTS</scp> database: a global database of how local terrestrial biodiversity responds to human impacts. Ecology and Evolution, 2014, 4, 4701-4735.	1.9	178
53	Exotic birds increase generalization and compensate for native bird decline in plant–frugivore assemblages. Journal of Animal Ecology, 2014, 83, 1441-1450.	2.8	64
54	Effects of Soil Warming and Nitrogen Addition on Soil Respiration in a New Zealand Tussock Grassland. PLoS ONE, 2014, 9, e91204.	2.5	42

#	Article	IF	CITATIONS
55	Effects of global environmental changes on parasitoid–host food webs and biological control. Biological Control, 2014, 75, 77-86.	3.0	67
56	If and when successful classical biological control fails. Biological Control, 2014, 72, 76-79.	3.0	42
57	Complementarity and redundancy of interactions enhance attack rates and spatial stability in host–parasitoid food webs. Ecology, 2014, 95, 1888-1896.	3.2	79
58	<scp>BIOFRAG</scp> – a new database for analyzing <scp>BIO</scp> diversity responses to forest <scp>FRAG</scp> mentation. Ecology and Evolution, 2014, 4, 1524-1537.	1.9	29
59	The winners and losers of land use intensification: pollinator community disassembly is nonâ€random and alters functional diversity. Diversity and Distributions, 2014, 20, 908-917.	4.1	138
60	Tipping points in ecological networks. Trends in Plant Science, 2014, 19, 281-283.	8.8	25
61	Mycorrhizas and mycorrhizal fungal communities throughout ecosystem development. Plant and Soil, 2013, 367, 11-39.	3.7	152
62	A long-term experimental test of the dynamic equilibrium model of species diversity. Oecologia, 2013, 171, 439-448.	2.0	20
63	Genotype matching in a parasitoid–host genotypic food web: an approach for measuring effects of environmental change. Molecular Ecology, 2013, 22, 229-238.	3.9	23
64	The dimensionality of ecological networks. Ecology Letters, 2013, 16, 577-583.	6.4	246
65	Pollination Decline in Context—Response. Science, 2013, 340, 924-925.	12.6	13
66	The Global Plight of Pollinators. Science, 2013, 339, 1532-1533.	12.6	86
67	Community shifts under climate change: Mechanisms at multiple scales. American Journal of Botany, 2013, 100, 1422-1434.	1.7	42
68	Elevated Temperature and Drought Interact to Reduce Parasitoid Effectiveness in Suppressing Hosts. PLoS ONE, 2013, 8, e58136.	2.5	99
69	Warming and nitrogen affect size structuring and density dependence in a host–parasitoid food web. Philosophical Transactions of the Royal Society B: Biological Sciences, 2012, 367, 3033-3041.	4.0	36
70	Landscape moderation of biodiversity patterns and processes ―eight hypotheses. Biological Reviews, 2012, 87, 661-685.	10.4	1,443
71	â€~Ecosystomics': ecology by sequencer. Trends in Ecology and Evolution, 2012, 27, 309-310.	8.7	11
72	Specialization and Rarity Predict Nonrandom Loss of Interactions from Mutualist Networks. Science, 2012, 335, 1486-1489.	12.6	237

#	Article	IF	CITATIONS
73	Plantâ€mediated and nonadditive effects of two global change drivers on an insect herbivore community. Ecology, 2012, 93, 1892-1901.	3.2	64
74	Biodiversity, Species Interactions and Ecological Networks in a Fragmented World. Advances in Ecological Research, 2012, 46, 89-210.	2.7	284
75	Food webs: reconciling the structure and function of biodiversity. Trends in Ecology and Evolution, 2012, 27, 689-697.	8.7	521
76	Cascading effects of longâ€ŧerm landâ€use changes on plant traits and ecosystem functioning. Ecology, 2012, 93, 145-155.	3.2	119
77	Climate Change Disproportionately Increases Herbivore over Plant or Parasitoid Biomass. PLoS ONE, 2012, 7, e40557.	2.5	114
78	Effects of Introducing Threatened Falcons into Vineyards on Abundance of Passeriformes and Bird Damage to Grapes. Conservation Biology, 2012, 26, 142-149.	4.7	69
79	Warming, CO ₂ , and nitrogen deposition interactively affect a plantâ€pollinator mutualism. Ecology Letters, 2012, 15, 227-234.	6.4	143
80	Translocation of Threatened New Zealand Falcons to Vineyards Increases Nest Attendance, Brooding and Feeding Rates. PLoS ONE, 2012, 7, e38679.	2.5	10
81	Forest Biodiversity and the Delivery of Ecosystem Goods and Services: Translating Science into Policy. BioScience, 2011, 61, 972-981.	4.9	126
82	Early succession arthropod community changes on experimental passion fruit plant patches along a land-use gradient in Ecuador. Agriculture, Ecosystems and Environment, 2011, 140, 14-19.	5.3	12
83	Natural enemy diversity reduces temporal variability in wasp but not bee parasitism. Oecologia, 2010, 162, 755-762.	2.0	26
84	Natural enemy diversity and biological control: Making sense of the context-dependency. Basic and Applied Ecology, 2010, 11, 657-668.	2.7	115
85	Genetic analyses reveal hybridization but no hybrid swarm in one of the world's rarest birds. Molecular Ecology, 2010, 19, 5090-5100.	3.9	52
86	Deforestation homogenizes tropical parasitoid–host networks. Ecology, 2010, 91, 1740-1747.	3.2	113
87	Conservation of species interaction networks. Biological Conservation, 2010, 143, 2270-2279.	4.1	689
88	Comparison of Two Sampling Methods for Quantifying Changes in Vegetation Composition Under Rangeland Development. Rangeland Ecology and Management, 2010, 63, 537-545.	2.3	11
89	Warming Up Food Webs. Science, 2009, 323, 1300-1301.	12.6	21
90	The invasive Yellow Crazy Ant and the decline of forest ant diversity in Indonesian cacao agroforests. Biological Invasions, 2008, 10, 1399-1409.	2.4	67

#	Article	IF	CITATIONS
91	The population consequences of natural enemy enhancement, and implications for conservation biological control. Ecology Letters, 2008, 6, 604-612.	6.4	86
92	Global change and species interactions in terrestrial ecosystems. Ecology Letters, 2008, 11, 1351-1363.	6.4	1,880
93	LANDSCAPE CONSTRAINTS ON FUNCTIONAL DIVERSITY OF BIRDS AND INSECTS IN TROPICAL AGROECOSYSTEMS. Ecology, 2008, 89, 944-951.	3.2	310
94	Reprint of "Conservation biological control and enemy diversity on a landscape scale―[Biol. Control 43 (2007) 294–309]. Biological Control, 2008, 45, 238-253.	3.0	64
95	Functional group diversity of bee pollinators increases crop yield. Proceedings of the Royal Society B: Biological Sciences, 2008, 275, 2283-2291.	2.6	534
96	Understanding the Web of Life: The Birds, the Bees, and Sex with Aliens. PLoS Biology, 2008, 6, e47.	5.6	51
97	Resource Heterogeneity Moderates the Biodiversity-Function Relationship in Real World Ecosystems. PLoS Biology, 2008, 6, e122.	5.6	210
98	CAVEATS TO QUANTIFYING ECOSYSTEM SERVICES: FRUIT ABORTION BLURS BENEFITS FROM CROP POLLINATION. Ecological Applications, 2007, 17, 1841-1849.	3.8	126
99	Interactive effects of habitat modification and species invasion on native species decline. Trends in Ecology and Evolution, 2007, 22, 489-496.	8.7	692
100	Conservation biological control and enemy diversity on a landscape scale. Biological Control, 2007, 43, 294-309.	3.0	531
101	Habitat modification alters the structure of tropical host–parasitoid food webs. Nature, 2007, 445, 202-205.	27.8	775
102	Abandonement of coffee agroforests increases insect abundance and diversity. Agroforestry Systems, 2007, 69, 175-182.	2.0	22
103	DIVERSITY, ECOSYSTEM FUNCTION, AND STABILITY OF PARASITOID–HOST INTERACTIONS ACROSS A TROPICAL HABITAT GRADIENT. Ecology, 2006, 87, 3047-3057.	3.2	139
104	Spillover edge effects: the dispersal of agriculturally subsidized insect natural enemies into adjacent natural habitats. Ecology Letters, 2006, 9, 603-614.	6.4	518
105	The effects of floral understoreys on parasitism of leafrollers (Lepidoptera: Tortricidae) on apples in New Zealand. Agricultural and Forest Entomology, 2006, 8, 25-34.	1.3	88
106	Spatial scale of observation affects alpha, beta and gamma diversity of cavity-nesting bees and wasps across a tropical land-use gradient. Journal of Biogeography, 2006, 33, 1295-1304.	3.0	90
107	Remotely sensed landscape heterogeneity as a rapid tool for assessing local biodiversity value in a highly modified New Zealand landscape. Biodiversity and Conservation, 2005, 14, 1469-1485.	2.6	23
108	Are invasive species the drivers of ecological change?. Trends in Ecology and Evolution, 2005, 20, 470-474.	8.7	648

#	Article	IF	CITATIONS
109	SPATIOTEMPORAL VARIATION IN THE DIVERSITY OF HYMENOPTERA ACROSS A TROPICAL HABITAT GRADIENT. Ecology, 2005, 86, 3296-3302.	3.2	230
110	IMPROVED FITNESS OF APHID PARASITOIDS RECEIVING RESOURCE SUBSIDIES. Ecology, 2004, 85, 658-666.	3.2	244
111	Insect Interactions with Other Pests (Weeds, Pathogens, Nematodes). , 2004, , 1-4.		Ο
112	Field boundaries as barriers to movement of hover flies (Diptera: Syrphidae) in cultivated land. Oecologia, 2003, 134, 605-611.	2.0	152
113	Conservation, biodiversity, and integrated pest management. , 0, , 223-245.		3