Michael J Brownstein

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11500571/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Structure of a cannabinoid receptor and functional expression of the cloned cDNA. Nature, 1990, 346, 561-564.	13.7	4,505
2	The ubiquitin pathway in Parkinson's disease. Nature, 1998, 395, 451-452.	13.7	1,518
3	Modulation of Non-Templated Nucleotide Addition by <i>Taq</i> DNA Polymerase: Primer Modifications that Facilitate Genotyping. BioTechniques, 1996, 20, 1004-1010.	0.8	1,137
4	Clustering and conservation patterns of human microRNAs. Nucleic Acids Research, 2005, 33, 2697-2706.	6.5	720
5	Structure and expression of a human oxytocin receptor. Nature, 1992, 356, 526-529.	13.7	613
6	Tissue-Specific Expression of a Splicing Mutation in the Gene Causes Familial Dysautonomia. American Journal of Human Genetics, 2001, 68, 598-605.	2.6	558
7	The distribution of cholecystokinin immunoreactivity in the central nervous system of the rat as determined by radioimmunoassay. Brain Research, 1981, 212, 51-57.	1.1	518
8	Cloning and characterization of a vasopressin V2 receptor and possible link to nephrogenic diabetes insipidus. Nature, 1992, 357, 336-339.	13.7	510
9	Pain responses, anxiety and aggression in mice deficient in pre-proenkephalin. Nature, 1996, 383, 535-538.	13.7	482
10	Molecular cloning and expression of a rat Via arginine vasopressin receptor. Nature, 1992, 356, 523-526.	13.7	476
11	Regional distribution of substance P in the brain of the rat. Brain Research, 1976, 116, 299-305.	1.1	419
12	On the origin of substance P and glutamic acid decarboxylase (GAD) in the substantia nigra. Brain Research, 1977, 135, 315-323.	1.1	306
13	Localisation of phenylethanolamine N-methyl transferase in the rat brain nuclei. Nature, 1974, 248, 695-696.	13.7	285
14	A role for ASIC3 in the modulation of high-intensity pain stimuli. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 8992-8997.	3.3	285
15	Serotonin distribution in the nuclei of the rat hypothalamus and preoptic region. Brain Research, 1974, 77, 157-165.	1.1	274
16	Identification of clustered microRNAs using an ab initio prediction method. BMC Bioinformatics, 2005, 6, 267.	1.2	219
17	Glutamate decarboxylase (GAD) and γ-aminobutyric acid (GABA) in discrete nuclei of hypothalamus and substantia nigra. Brain Research, 1977, 125, 109-121.	1.1	208
18	Distribution of glutamete decarâ~ylase in discrete brain nuclei. Brain Research, 1976, 108, 371-379.	1.1	207

#	Article	IF	CITATIONS
19	A dynorphinergic pathway of Leu-enkephalin production in rat substantia nigra. Nature, 1984, 307, 643-645.	13.7	190
20	Differentiation of human bone marrow-derived cells into buccal epithelial cells in vivo: a molecular analytical study. Lancet, The, 2003, 361, 1084-1088.	6.3	169
21	A frequent ala 4 to val superoxide dismutase-1 mutation is associated with a rapidly progressive familial amyotrophic lateral sclerosis. Human Molecular Genetics, 1994, 3, 981-987.	1.4	156
22	A carboxypeptidase processing enzyme for enkephalin precursors. Nature, 1982, 295, 341-342.	13.7	146
23	Cholecystokinin octapeptide in the rat hypothalamo-neurohypophysial system. Nature, 1980, 288, 376-378.	13.7	141
24	Use of a cDNA clone to identify a supposed precursor protein containing valosin. Nature, 1987, 325, 542-545.	13.7	132
25	Effect of surgical isolation of the hypothalamus on its neurotransmitter content. Brain Research, 1976, 117, 287-295.	1.1	128
26	Mutations in SOD1 associated with amyotrophic lateral sclerosis cause novel protein interactions. Nature Genetics, 1997, 15, 91-94.	9.4	121
27	Evidence for substance P in the habenulo-interpeduncular tract. Brain Research, 1976, 113, 597-599.	1.1	113
28	Evidence for substance P in the striato-nigral tract. Brain Research, 1977, 125, 305-311.	1.1	112
29	Distribution of immunoreactive dynorphin in the central nervous system of the rat. Brain Research, 1983, 280, 81-93.	1.1	110
30	Histamine content of hypothalamic nuclei of the rat. Brain Research, 1974, 77, 151-156.	1.1	108
31	Cloning and expression of a novel rat GABAA receptor. FEBS Letters, 1989, 246, 145-148.	1.3	105
32	Origin of glutamate-decarboxylase (GAD)-containing cells in discrete hypothalamic nuclei. Brain Research, 1977, 132, 95-106.	1.1	98
33	Amine-modified random primers to label probes for DNA microarrays. Nature Biotechnology, 2002, 20, 738-742.	9.4	82
34	Molecular Biology of Vasopressin Receptors. Annals of the New York Academy of Sciences, 1995, 771, 273-292.	1.8	70
35	Azetidinones as vasopressin V1a antagonists. Bioorganic and Medicinal Chemistry, 2007, 15, 2054-2080.	1.4	68
36	Biogenic amines and related enzymes in the circumventricular organs of the rat. Brain Research, 1976, 107, 412-417.	1.1	66

MICHAEL J BROWNSTEIN

#	Article	IF	CITATIONS
37	A Mutation in the Vasopressin V2-Receptor Gene in a Kindred with X-Linked Nephrogenic Diabetes Insipidus. New England Journal of Medicine, 1993, 328, 1538-1541.	13.9	65
38	The Development of a Highly Informative Mouse Simple Sequence Length Polymorphism (SSLP) Marker Set and Construction of a Mouse Family Tree Using Parsimony Analysis. Genome Research, 2003, 13, 485-491.	2.4	62
39	Distribution of catechol-O-methyltransferase, histamine N-methyltransferase and monoamine oxidase in specific areas of the rat brain. Brain Research, 1976, 118, 152-156.	1.1	61
40	Analysis of primary visual cortex in dementia with Lewy bodies indicates GABAergic involvement associated with recurrent complex visual hallucinations. Acta Neuropathologica Communications, 2016, 4, 66.	2.4	58
41	Molecular Cloning and Functional Characterization of a Vasotocin Receptor Subtype That Is Expressed in the Shell Gland and Brain of the Domestic Chicken1. Biology of Reproduction, 2000, 62, 8-15.	1.2	56
42	Regional distribution of substance P-like immunoreactivity in the lower brainstem of the rat. Brain Research, 1982, 245, 376-378.	1.1	54
43	On the origin of the serotonergic input to the intermediate lobe of the rat pituitary. Brain Research, 1984, 294, 231-237.	1.1	53
44	Chapter 11 Multiple chemical messengers in hypothalamic magnocellular neurons. Progress in Brain Research, 1986, 68, 161-168.	0.9	51
45	Deafferentation studies on the glutamic acid decarâ~ylase content of the supraoptic nucleus of the rat. Brain Research, 1980, 200, 165-168.	1.1	42
46	On the origin of dynorphin A and α-neo-endorphin in the substantia nigra. Neuropeptides, 1984, 4, 193-199.	0.9	34
47	Cholecystokinin in the hypothalamo-hypophyseal system. Brain Research, 1984, 299, 186-189.	1.1	31
48	Molecular cloning and expression of rat V1a and V2 arginine vasopressin receptors. Regulatory Peptides, 1993, 45, 53-59.	1.9	31
49	Onset of neurophysin self-association upon neurophysin/neuropeptide hormone precursor biosynthesis. FEBS Letters, 1983, 164, 361-365.	1.3	27
50	Of splice and men: what does the distribution of IKAP mRNA in the rat tell us about the pathogenesis of familial dysautonomia?. Brain Research, 2003, 983, 209-214.	1.1	27
51	Opioid and cannabinoid receptors. Current Opinion in Neurobiology, 1994, 4, 406-412.	2.0	23
52	Biologically Active Peptides in the Mammalian Central Nervous System. , 1977, , 145-170.		23
53	Opioid peptides: search for the precursors. Nature, 1980, 287, 678-679.	13.7	22
54	Molecular cloning of a novel candidate G protein-coupled receptor from rat brain. FEBS Letters, 1994, 351, 375-379.	1.3	22

MICHAEL J BROWNSTEIN

#	Article	IF	CITATIONS
55	Corpus callosum lesions increase cholecystokinin concentrations in cortical areas with homeotopic connections. Brain Research, 1982, 240, 151-153.	1.1	18
56	Descending substance P-containing pathway: a component of the ansa lenticularis. Brain Research, 1978, 156, 124-128.	1.1	16
57	Locus Coeruleus. Advances in Cellular Neurobiology, 1983, 4, 81-103.	1.0	11
58	Cholecystokinin peptides in the brain and pituitary of the bullfrog Rana catesbiana: distribution and characterization. Brain Research, 1983, 268, 192-196.	1.1	10
59	Distribution of immunoreactive metorphamide (adrenorphin) in discrete regions of the rat brain: Comparison with met-enkephalin-Arg6-Cly7-Leu8. Brain Research, 1985, 361, 193-199.	1.1	8
60	Studies of the Distribution of Biologically Active Peptides in the Brain. Advances in Experimental Medicine and Biology, 1977, 87, 41-48.	0.8	4
61	Isolation and characterization of the human homeobox gene HOX D1. Molecular Biology Reports, 2000, 27, 195-201.	1.0	3
62	Do circulating cells transdifferentiate and replenish stem cell pools in the brain and periphery?. BioEssays, 2015, 37, 398-402.	1.2	1
63	BIOCHEMICAL ANATOMY OF THE EXTRAPYRAMIDAL SYSTEM. , 1979, , 33-43.		1
64	<i>Response</i> : The Sympathochromaffin System and the Pituitary-Adrenocortical Response to Hypoglycemia. Science, 1986, 231, 502-502.	6.0	0
65	<i>Response</i> : The Sympathochromaffin System and the Pituitary-Adrenocortical Response to Hypoglycemia. Science, 1986, 231, 502-502.	6.0	0