Atsushi Ogawa

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/114977/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Sulfurâ^'Gold Orbital Interactions which Determine the Structure of Alkanethiolate/Au(111) Self-Assembled Monolayer Systems. Journal of Physical Chemistry B, 2002, 106, 12727-12736.	2.6	135
2	Theophylline-Dependent Riboswitch as a Novel Genetic Tool for Strict Regulation of Protein Expression in Cyanobacterium Synechococcus elongatus PCC 7942. Plant and Cell Physiology, 2013, 54, 1724-1735.	3.1	124
3	An Artificial Aptazymeâ€Based Riboswitch and its Cascading System in <i>E. coli</i> . ChemBioChem, 2008, 9, 206-209.	2.6	98
4	Rational design of artificial riboswitches based on ligand-dependent modulation of internal ribosome entry in wheat germ extract and their applications as label-free biosensors. Rna, 2011, 17, 478-488.	3.5	86
5	Theoretical Analysis of Lewis Basicity Based on Local Electron-Donating Ability. Origin of Basic Strength of Cyclic Amines. Journal of Organic Chemistry, 2004, 69, 7486-7494.	3.2	61
6	Easy design of logic gates based on aptazymes and noncrosslinking gold nanoparticle aggregation. Chemical Communications, 2009, , 4666.	4.1	60
7	Aptazyme-based riboswitches as label-free and detector-free sensors for cofactors. Bioorganic and Medicinal Chemistry Letters, 2007, 17, 3156-3160.	2.2	47
8	Hole Trapping atN6-Cyclopropyldeoxyadenosine Suggests a Direct Contribution of Adenine Bases to Hole Transport through DNA. Journal of the American Chemical Society, 2003, 125, 10154-10155.	13.7	41
9	Suppression of DNA-Mediated Charge Transport by BamHI Binding. Chemistry and Biology, 2002, 9, 361-366.	6.0	34
10	In vitro selection of RNA aptamer against Escherichia coli release factor 1. Bioorganic and Medicinal Chemistry Letters, 2007, 17, 1216-1220.	2.2	34
11	[2+1] Cycloaddition reaction of bis(iodozincio)methane with 1,2-diketones: face-to-face complex of bis(iodozincio)methane and 1,2-diketones as a reaction intermediate. Tetrahedron, 2002, 58, 8255-8262.	1.9	28
12	Simple and rapid colorimetric detection of cofactors of aptazymes using noncrosslinking gold nanoparticle aggregation. Bioorganic and Medicinal Chemistry Letters, 2008, 18, 6517-6520.	2.2	26
13	Biofunctionâ€Assisted Sensors Based on a New Method for Converting Aptazyme Activity into Reporter Protein Expression with High Efficiency in Wheat Germ Extract. ChemBioChem, 2009, 10, 2465-2468.	2.6	26
14	A Novel Labelâ€Free Biosensor Using an Aptazyme–Suppressorâ€ŧRNA Conjugate and an Amber Mutated Reporter Gene. ChemBioChem, 2008, 9, 2204-2208.	2.6	25
15	Rational construction of eukaryotic OFF-riboswitches that downregulate internal ribosome entry site-mediated translation in response to their ligands. Bioorganic and Medicinal Chemistry Letters, 2012, 22, 1639-1642.	2.2	25
16	Lewis Acidity of Gallium Halides. Inorganic Chemistry, 2002, 41, 4888-4894.	4.0	24
17	Ligandâ€Dependent Upregulation of Ribosomal Shunting. ChemBioChem, 2013, 14, 1539-1543.	2.6	19
18	Aptamer selection for the inhibition of cell adhesion with fibronectin as target. Bioorganic and Medicinal Chemistry Letters, 2004, 14, 4001-4004.	2.2	16

Atsushi Ogawa

#	Article	IF	CITATIONS
19	Artificial OFF-Riboswitches That Downregulate Internal Ribosome Entry without Hybridization Switches in a Eukaryotic Cell-Free Translation System. ACS Synthetic Biology, 2017, 6, 1656-1662.	3.8	16
20	Detection of Gold Nanoparticles Aggregation Using Light Scattering for Molecular Sensing. Analytical Sciences, 2019, 35, 685-690.	1.6	16
21	Reexamination of orbital interactions in Diels–Alder reactions. Tetrahedron Letters, 2002, 43, 2055-2057.	1.4	15
22	Isothermal sensitive detection of microRNA using an autonomous DNA machine recycling output as input. Bioorganic and Medicinal Chemistry Letters, 2010, 20, 6056-6060.	2.2	13
23	Identification of short untranslated regions that sufficiently enhance translation in high-quality wheat germ extract. Bioorganic and Medicinal Chemistry Letters, 2014, 24, 3724-3727.	2.2	13
24	Ligand-responsive upregulation of 3′ CITE-mediated translation in a wheat germ cell-free expression system. Molecular BioSystems, 2017, 13, 314-319.	2.9	13
25	Modification of carbon metabolism in Synechococcus elongatus PCC 7942 by cyanophage-derived sigma factors for bioproduction improvement. Journal of Bioscience and Bioengineering, 2019, 127, 256-264.	2.2	13
26	Multiple atalytic Sensing of Nucleic Acid Sequences by Utilising a DNA–RNA–DNA Chimeric Antisense Probe and RNase H with a Eukaryotic Cellâ€Free Translation System. ChemBioChem, 2011, 12, 881-885.	2.6	12
27	RNA aptazyme-tethered large gold nanoparticles for on-the-spot sensing of the aptazyme ligand. Bioorganic and Medicinal Chemistry Letters, 2011, 21, 155-159.	2.2	12
28	Detector-free and Multiple Sensing of Various Molecules Using Gold Nanoparticles and Aptazymes. Chemistry Letters, 2009, 38, 848-849.	1.3	11
29	Improvement of in vitro-transcribed amber suppressor tRNAs toward higher suppression efficiency in wheat germ extract. Organic and Biomolecular Chemistry, 2011, 9, 8495.	2.8	11
30	Multiple-input and visible-output logic gates using signal-converting DNA machines and gold nanoparticle aggregation. Organic and Biomolecular Chemistry, 2013, 11, 3272.	2.8	11
31	Orbital Interactions between a C60Molecule and Cu(111) Surface. Journal of Physical Chemistry B, 2003, 107, 12672-12679.	2.6	10
32	Molecular detection using aptamer-modified gold nanoparticles with an immobilized DNA brush for the prevention of non-specific aggregation. RSC Advances, 2021, 11, 11984-11991.	3.6	10
33	Rational Design of Artificial ON-Riboswitches. Methods in Molecular Biology, 2014, 1111, 165-181.	0.9	10
34	Termination-Free Prokaryotic Protein Translation by Using Anticodon-Adjusted E. coli tRNASer as Unified Suppressors of the UAA/UGA/UAG Stop Codons. Read-Through Ribosome Display of Full-Length DHFR with Translated UTR as a Buried Spacer Arm. ChemBioChem, 2006, 7, 249-252.	2.6	8
35	<i>In Vitro</i> Selection of RNA Aptamers Binding to Nanosized DNA for Constructing Artificial Riboswitches. ACS Synthetic Biology, 2020, 9, 2648-2655.	3.8	8
36	Development of Human CBF1-Targeting Single-Stranded DNA Aptamers with Antiangiogenic Activity <i>In Vitro</i> . Nucleic Acid Therapeutics, 2020, 30, 365-378.	3.6	8

Atsushi Ogawa

#	Article	IF	CITATIONS
37	A Concept for Selection of Codon-Suppressor tRNAs Based on Read-Through Ribosome Display in an <i>In Vitro</i> Compartmentalized Cell-Free Translation System. Journal of Nucleic Acids, 2012, 2012, 1-7.	1.2	7
38	Thermodynamics-based Rational Design of DNA Block Copolymers for Quantitative Detection of Single-Nucleotide Polymorphisms by Affinity Capillary Electrophoresis. Analytical Chemistry, 2014, 86, 11425-11433.	6.5	7
39	Engineering of Ribosomal Shunt-Modulating Eukaryotic ON Riboswitches by Using a Cell-Free Translation System. Methods in Enzymology, 2015, 550, 109-128.	1.0	7
40	Canonical translation-modulating OFF-riboswitches with a single aptamer binding to a small molecule that function in a higher eukaryotic cell-free expression system. Bioorganic and Medicinal Chemistry Letters, 2018, 28, 2353-2357.	2.2	7
41	Preparation of a Millimeter-Sized Supergiant Liposome That Allows for Efficient, Eukaryotic Cell-Free Translation in the Interior by Spontaneous Emulsion Transfer. ACS Synthetic Biology, 2020, 9, 1608-1614.	3.8	7
42	Biofunction-assisted aptasensors based on ligand-dependent 3′ processing of a suppressor tRNA in a wheat germ extract. Organic and Biomolecular Chemistry, 2015, 13, 6681-6685.	2.8	6
43	Investigation of end processing and degradation of premature tRNAs and their application to stabilization of in vitro transcripts in wheat germ extract. Organic and Biomolecular Chemistry, 2015, 13, 1008-1012.	2.8	6
44	Rational optimization of amber suppressor tRNAs toward efficient incorporation of a non-natural amino acid into protein in a eukaryotic wheat germ extract. Organic and Biomolecular Chemistry, 2016, 14, 2671-2678.	2.8	6
45	In vitro selection of a 3′ terminal short protector that stabilizes transcripts to improve the translation efficiency in a wheat germ extract. Bioorganic and Medicinal Chemistry Letters, 2019, 29, 2141-2144.	2.2	5
46	Dumbbell-Shaped DNA Analytes Amplified by Polymerase Chain Reaction for Robust Single-Nucleotide Polymorphism Genotyping by Affinity Capillary Electrophoresis. Analytical Chemistry, 2013, 85, 5347-5352.	6.5	4
47	Biofunction-assisted DNA detection through RNase H-enhanced 3′ processing of a premature tRNA probe in a wheat germ extract. Bioorganic and Medicinal Chemistry Letters, 2016, 26, 3658-3661.	2.2	4
48	Development of a New-type Riboswitch Using an Aptazyme and an anti-RBS Sequence. Nucleic Acids Symposium Series, 2007, 51, 389-390.	0.3	3
49	Eukaryotic artificial ON-riboswitches that respond efficiently to mid-sized short peptides. Bioorganic and Medicinal Chemistry Letters, 2022, 71, 128839.	2.2	3
50	Rational Design of Artificial Riboswitches. , 2018, , 79-93.		2
51	Mutation of the start codon to enhance Cripavirus internal ribosome entry site-mediated translation in a wheat germ extract. Bioorganic and Medicinal Chemistry Letters, 2019, 29, 126729.	2.2	2
52	Suppressor tRNA-based Biosensors for Detecting Analytes. Analytical Sciences, 2021, 37, 407-414.	1.6	2
53	In vitro selection of RNA aptamers for the Escherichia coli release factor 1. Nucleic Acids Symposium Series, 2005, 49, 269-270.	0.3	1
54	In vitro read-through polysome/ribosome display of full-length protein ORF and it's applications. Nucleic Acids Symposium Series, 2005, 49, 267-268.	0.3	1

#	Article	IF	CITATIONS
55	Simple and Rapid Colorimetric Detection of Low-Weight Molecules Using Aptazymes in Combination with Noncrosslinking Gold Nanoparticle Aggregation. Nucleic Acids Symposium Series, 2008, 52, 527-528.	0.3	1
56	A Detailed Protocol for Preparing Millimeter-sized Supergiant Liposomes that Permit Efficient Eukaryotic Cell-free Translation in the Interior. Bio-protocol, 2021, 11, e4054.	0.4	1
57	Coupled in vitro transcription/translation based on wheat germ extract for efficient expression from PCR-generated templates in short-time batch reactions. Bioorganic and Medicinal Chemistry Letters, 2021, 52, 128412.	2.2	1