
Oliver Planz

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11496526/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Influenza virus propagation is impaired by inhibition of the Raf/MEK/ERK signalling cascade. Nature Cell Biology, 2001, 3, 301-305.	10.3	463
2	Caspase 3 activation is essential for efficient influenza virus propagation. EMBO Journal, 2003, 22, 2717-2728.	7.8	299
3	Influenza A Virus NS1 Protein Activates the PI3K/Akt Pathway To Mediate Antiapoptotic Signaling Responses. Journal of Virology, 2007, 81, 3058-3067.	3.4	286
4	NF-κB-dependent Induction of Tumor Necrosis Factor-related Apoptosis-inducing Ligand (TRAIL) and Fas/FasL Is Crucial for Efficient Influenza Virus Propagation. Journal of Biological Chemistry, 2004, 279, 30931-30937.	3.4	220
5	Bivalent role of the phosphatidylinositol-3-kinase (PI3K) during influenza virus infection and host cell defence. Cellular Microbiology, 2006, 8, 1336-1348.	2.1	212
6	Ringing the alarm bells: signalling and apoptosis in influenza virus infected cells. Cellular Microbiology, 2006, 8, 375-386.	2.1	210
7	Acetylsalicylic acid (ASA) blocks influenza virus propagation via its NF-?B-inhibiting activity. Cellular Microbiology, 2007, 9, 1683-1694.	2.1	181
8	The Influenza A Virus NS1 Protein Inhibits Activation of Jun N-Terminal Kinase and AP-1 Transcription Factors. Journal of Virology, 2002, 76, 11166-11171.	3.4	164
9	NF-κB Pathway as a Potential Target for Treatment of Critical Stage COVID-19 Patients. Frontiers in Immunology, 2020, 11, 598444.	4.8	153
10	Influenza-virus-induced signaling cascades: targets for antiviral therapy?. Trends in Molecular Medicine, 2003, 9, 46-52.	6.7	149
11	A polyphenol rich plant extract, CYSTUS052, exerts anti influenza virus activity in cell culture without toxic side effects or the tendency to induce viral resistance. Antiviral Research, 2007, 76, 38-47.	4.1	142
12	Rac1 and PAK1 are upstream of IKK-ε and TBK-1 in the viral activation of interferon regulatory factor-3. FEBS Letters, 2004, 567, 230-238.	2.8	126
13	Membrane Accumulation of Influenza A Virus Hemagglutinin Triggers Nuclear Export of the Viral Genome via Protein Kinase Cα-mediated Activation of ERK Signaling. Journal of Biological Chemistry, 2006, 281, 16707-16715.	3.4	121
14	Inhibition of influenza virus-induced NF-kappaB and Raf/MEK/ERK activation can reduce both virus titers and cytokine expression simultaneously in vitro and in vivo. Antiviral Research, 2011, 92, 45-56.	4.1	110
15	MEK-Specific Inhibitor U0126 Blocks Spread of Borna Disease Virus in Cultured Cells. Journal of Virology, 2001, 75, 4871-4877.	3.4	109
16	CYSTUS052, a polyphenol-rich plant extract, exerts anti-influenza virus activity in mice. Antiviral Research, 2007, 76, 1-10.	4.1	108
17	MEK inhibition impairs influenza B virus propagation without emergence of resistant variants. FEBS Letters, 2004, 561, 37-43.	2.8	105
18	Influenza Virus Infection Aggravates Stroke Outcome. Stroke, 2011, 42, 783-791.	2.0	104

#	Article	IF	CITATIONS
19	Viral targeting of the interferon-β-inducing Traf family member-associated NF-κB activator (TANK)-binding kinase-1. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 13640-13645.	7.1	102
20	Antiviral activity of the MEK-inhibitor U0126 against pandemic H1N1v and highly pathogenic avian influenza virus in vitro and in vivo. Antiviral Research, 2011, 92, 195-203.	4.1	100
21	Influenza viruses and the NF-κB signaling pathway – towards a novel concept of antiviral therapy. Biological Chemistry, 2008, 389, 1307-12.	2.5	96
22	Development of cellular signaling pathway inhibitors as new antivirals against influenza. Antiviral Research, 2013, 98, 457-468.	4.1	94
23	Specific cytotoxic T cells eliminate cells producing neutralizing antibodies. Nature, 1996, 382, 726-729.	27.8	93
24	PAR1 contributes to influenza A virus pathogenicity in mice. Journal of Clinical Investigation, 2013, 123, 206-214.	8.2	73
25	The NS Segment of an H5N1 Highly Pathogenic Avian Influenza Virus (HPAIV) Is Sufficient To Alter Replication Efficiency, Cell Tropism, and Host Range of an H7N1 HPAIV. Journal of Virology, 2010, 84, 2122-2133.	3.4	69
26	The NF-κB inhibitor SC75741 efficiently blocks influenza virus propagation and confers a high barrier for development of viral resistance. Cellular Microbiology, 2013, 15, 1198-1211.	2.1	68
27	The NS1 Protein of Influenza A Virus Blocks RIG-I-Mediated Activation of the Noncanonical NF-ήB Pathway and p52/RelB-Dependent Gene Expression in Lung Epithelial Cells. Journal of Virology, 2012, 86, 10211-10217.	3.4	65
28	The immunopathogenesis of Borna disease virus infection. Frontiers in Bioscience - Landmark, 2002, 7, d541-555.	3.0	62
29	Pathogenesis of Borna Disease Virus: Granulocyte Fractions of Psychiatric Patients Harbor Infectious Virus in the Absence of Antiviral Antibodies. Journal of Virology, 1999, 73, 6251-6256.	3.4	60
30	Presence of CD4+ and CD8+ T Cells and Expression of MHC Class I and MHC Class II Antigen in Horses with Borna Disease Virus-Induced Encephalitis. Brain Pathology, 1995, 5, 223-230.	4.1	59
31	Novel Recombinant Parapoxvirus Vectors Induce Protective Humoral and Cellular Immunity against Lethal Herpesvirus Challenge Infection in Mice. Journal of Virology, 2003, 77, 9312-9323.	3.4	59
32	General and specific immunosuppression caused by antiviral T-cell responses. Immunological Reviews, 1999, 168, 305-315.	6.0	49
33	Prevention of Virus Persistence and Protection against Immunopathology after Borna Disease Virus Infection of the Brain by a Novel Orf Virus Recombinant. Journal of Virology, 2005, 79, 314-325.	3.4	49
34	Borna Disease Virus Nucleoprotein (p40) Is a Major Target for CD8 + -T-Cell-Mediated Immune Response. Journal of Virology, 1999, 73, 1715-1718.	3.4	47
35	Lung-specific expression of active Raf kinase results in increased mortality of influenza A virus-infected mice. Oncogene, 2004, 23, 6639-6646.	5.9	46
36	A tissue-based draft map of the murine MHC class I immunopeptidome. Scientific Data, 2018, 5, 180157.	5.3	45

#	Article	IF	CITATIONS
37	The MEK-inhibitor CI-1040 displays a broad anti-influenza virus activity inÂvitro and provides a prolonged treatment window compared to standard of care inÂvivo. Antiviral Research, 2017, 142, 178-184.	4.1	44
38	Neutralizing Antibodies in Persistent Borna Disease Virus Infection: Prophylactic Effect of gp94-Specific Monoclonal Antibodies in Preventing Encephalitis. Journal of Virology, 2001, 75, 943-951.	3.4	43
39	Role of Hypercytokinemia in NF-κB p50-Deficient Mice after H5N1 Influenza A Virus Infection. Journal of Virology, 2008, 82, 11461-11466.	3.4	43
40	Combination of MEK inhibitors and oseltamivir leads to synergistic antiviral effects after influenza A virus infection in vitro. Antiviral Research, 2013, 98, 319-324.	4.1	43
41	Virus-Specific CD4 ⁺ T Cells Eliminate Borna Disease Virus from the Brain via Induction of Cytotoxic CD8 ⁺ T Cells. Journal of Virology, 1998, 72, 4387-4395.	3.4	42
42	Lack of antiviral effect of amantadine in Borna disease virus infection. Medical Microbiology and Immunology, 1998, 186, 195-200.	4.8	36
43	Low-Dose Interferon Type I Treatment Is Effective Against H5N1 and Swine-Origin H1N1 Influenza A Viruses <i>In Vitro</i> and <i>In Vivo</i> . Journal of Interferon and Cytokine Research, 2011, 31, 515-525.	1.2	35
44	The NF-kappaB inhibitor SC75741 protects mice against highly pathogenic avian influenza A virus. Antiviral Research, 2013, 99, 336-344.	4.1	35
45	Inactivation of SARS-CoV-2 through Treatment with the Mouth Rinsing Solutions ViruProX® and BacterX® Pro. Microorganisms, 2021, 9, 521.	3.6	34
46	The clinically approved MEK inhibitor Trametinib efficiently blocks influenza A virus propagation and cytokine expression. Antiviral Research, 2018, 157, 80-92.	4.1	33
47	Mild Acid Elution and MHC Immunoaffinity Chromatography Reveal Similar Albeit Not Identical Profiles of the HLA Class I Immunopeptidome. Journal of Proteome Research, 2021, 20, 289-304.	3.7	32
48	Spread of Infection and Lymphocyte Depletion in Mice Depends on Polymerase of Influenza Virus. American Journal of Pathology, 2009, 175, 1178-1186.	3.8	31
49	Highly Pathogenic Influenza Virus Infection of the Thymus Interferes with T Lymphocyte Development. Journal of Immunology, 2010, 185, 4824-4834.	0.8	31
50	Persistence of Borna disease virus-specific nucleic acid in blood of psychiatric patient. Lancet, The, 1998, 352, 623.	13.7	30
51	Alteration of NF-κB activity leads to mitochondrial apoptosis after infection with pathological prion protein. Cellular Microbiology, 2007, 9, 2202-2217.	2.1	30
52	The MEK1/2-inhibitor ATR-002 efficiently blocks SARS-CoV-2 propagation and alleviates pro-inflammatory cytokine/chemokine responses. Cellular and Molecular Life Sciences, 2022, 79, 65.	5.4	29
53	Antiviral activity of Ladania067, an extract from wild black currant leaves against influenza A virus in vitro and in vivo. Frontiers in Microbiology, 2014, 5, 171.	3.5	28
54	Antibodies and CD4+ T-cells mediate cross-protection against H5N1 influenza virus infection in mice after vaccination with a low pathogenic H5N2 strain. Vaccine, 2008, 26, 6965-6974.	3.8	27

#	Article	IF	CITATIONS
55	Vaccine protection against lethal homologous and heterologous challenge using recombinant AAV vectors expressing codon-optimized genes from pandemic swine origin influenza virus (SOIV). Vaccine, 2011, 29, 1690-1699.	3.8	25
56	A Naturally Processed Rat Major Histocompatibility Complex Class I-associated Viral Peptide as Target Structure of Borna Disease Virus-specific CD8+ T Cells. Journal of Biological Chemistry, 2001, 276, 13689-13694.	3.4	24
57	A Plant Extract of Ribes nigrum folium Possesses Anti-Influenza Virus Activity In Vitro and In Vivo by Preventing Virus Entry to Host Cells. PLoS ONE, 2013, 8, e63657.	2.5	24
58	Adenoâ€associated virusâ€vectored influenza vaccine elicits neutralizing and Fcγ receptorâ€activating antibodies. EMBO Molecular Medicine, 2020, 12, e10938.	6.9	24
59	Borna Disease Virus Nucleoprotein Interacts with the Cdc2-Cyclin B1 Complex. Journal of Virology, 2003, 77, 11186-11192.	3.4	22
60	Antiviral activity of the proteasome inhibitor VL-01 against influenza A viruses. Antiviral Research, 2011, 91, 304-313.	4.1	22
61	Targeting intracellular signaling as an antiviral strategy: aerosolized LASAC for the treatment of influenza in hospitalized patients. Emerging Microbes and Infections, 2018, 7, 1-8.	6.5	22
62	Designing a SARS-CoV-2 T-Cell-Inducing Vaccine for High-Risk Patient Groups. Vaccines, 2021, 9, 428.	4.4	22
63	Pharmacodynamics, Pharmacokinetics, and Antiviral Activity of BAY 81-8781, a Novel NF-κB Inhibiting Anti-influenza Drug. Frontiers in Microbiology, 2017, 8, 2130.	3.5	21
64	Antiviral efficacy against influenza virus and pharmacokinetic analysis of a novel MEK-inhibitor, ATR-002, in cell culture and in the mouse model. Antiviral Research, 2020, 178, 104806.	4.1	21
65	High-Dose Borna Disease Virus Infection Induces a Nucleoprotein-Specific Cytotoxic T-Lymphocyte Response and Prevention of Immunopathology. Journal of Virology, 2001, 75, 11700-11708.	3.4	18
66	Constitutive Activation of the Transcription Factor NF-κB Results in Impaired Borna Disease Virus Replication. Journal of Virology, 2005, 79, 6043-6051.	3.4	17
67	Borna disease virus: a unique pathogen and its interaction with intracellular signalling pathways. Cellular Microbiology, 2009, 11, 872-879.	2.1	17
68	Cytotoxic T cell vaccination with PLGA microspheres interferes with influenza A virus replication in the lung and suppresses the infectious disease. Journal of Controlled Release, 2015, 216, 121-131.	9.9	17
69	Characterization of the Canine MHC Class I DLA-88*50101 Peptide Binding Motif as a Prerequisite for Canine T Cell Immunotherapy. PLoS ONE, 2016, 11, e0167017.	2.5	17
70	Human Borna Disease Virus Infection. , 0, , 179-225.		16
71	The adaptor protein FHL2 enhances the cellular innate immune response to influenza A virus infection. Cellular Microbiology, 2012, 14, 1135-1147.	2.1	13
72	Genetic relationship of Borna disease virus isolates. Virus Genes, 2003, 26, 25-30.	1.6	12

#	Article	IF	CITATIONS
73	Increased Plasma Matrix Metalloproteinase-9 Levels Contribute to Intracerebral Hemorrhage during Thrombolysis after Concomitant Stroke and Influenza Infection. Cerebrovascular Diseases Extra, 2017, 6, 50-59.	1.5	12
74	Improved in vitro Efficacy of Baloxavir Marboxil Against Influenza A Virus Infection by Combination Treatment With the MEK Inhibitor ATR-002. Frontiers in Microbiology, 2021, 12, 611958.	3.5	12
75	COVID-19: Mechanistic Model of the African Paradox Supports the Central Role of the NF-κB Pathway. Viruses, 2021, 13, 1887.	3.3	12
76	Metabolic conversion of CI-1040 turns a cellular MEK-inhibitor into an antibacterial compound. Scientific Reports, 2018, 8, 9114.	3.3	10
77	Could a Lower Toll-like Receptor (TLR) and NF-κB Activation Due to a Changed Charge Distribution in the Spike Protein Be the Reason for the Lower Pathogenicity of Omicron?. International Journal of Molecular Sciences, 2022, 23, 5966.	4.1	9
78	Precursors of Borna Disease Virus-Specific T Cells in Secondary Lymphatic Tissue of Experimentally Infected Rats. Journal of NeuroVirology, 2003, 9, 325-335.	2.1	6
79	The Alternative NF-κB Signalling Pathway is a Prerequisite for an Appropriate Immune Response Against Lymphocytic Choriomeningitis Virus Infection. Viral Immunology, 2010, 23, 295-308.	1.3	5
80	Pharmacokinetics, Pharmacodynamics and Antiviral Efficacy of the MEK Inhibitor Zapnometinib in Animal Models and in Humans. Frontiers in Pharmacology, 0, 13, .	3.5	5
81	Influenza virus H5N1 hemagglutinin (HA) Tâ€cell epitope conjugates: design, synthesis and immunogenicity. Journal of Peptide Science, 2011, 17, 226-232.	1.4	4
82	Bornavirus isolates of human origin. Lancet, The, 2000, 355, 656.	13.7	2
83	Inhibition of Borna Disease Virus-Mediated Cell Fusion by Monoclonal Antibodies Directed against the Viral Glycoprotein. Intervirology, 2004, 47, 108-113.	2.8	1
84	Signaling to Life and Death: Influenza Viruses and Intracellular Signal Transduction Cascades. Monographs in Virology, 2008, , 210-224.	0.6	1
85	Anti-viral approaches against influenza viruses. , 2006, , 115-167.		0
86	Response to Letter by McColl et al Regarding Article, "Influenza Virus Infection Aggravates Stroke Outcome― Stroke, 2011, 42, .	2.0	0