
Walter Schaffner

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11492238/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Short-lived mammals (shrew, mouse) have a less robust metal-responsive transcription factor than humans and bats. BioMetals, 2016, 29, 423-432.	1.8	5
2	Transcription enhancers as major determinants of SV40 polyomavirus growth efficiency and host cell tropism. Journal of General Virology, 2016, 97, 1597-1603.	1.3	5
3	2 Regulation of Metallothionein Gene Expression. , 2015, , 31-50.		Ο
4	Enhancers, enhancers – from their discovery to today's universe of transcription enhancers. Biological Chemistry, 2015, 396, 311-327.	1.2	82
5	Sp1 Sites in the Noncoding Control Region of BK Polyomavirus Are Key Regulators of Bidirectional Viral Early and Late Gene Expression. Journal of Virology, 2015, 89, 3396-3411.	1.5	57
6	Emergence of infectious simian virus 40 whose AT tract in the replication origin/early promoter region is substituted by cellular or viral DNAs. Journal of General Virology, 2015, 96, 601-606.	1.3	2
7	The legless lizard <i>Anguis fragilis</i> (slow worm) has a potent metal-responsive transcription factor 1 (MTF-1). Biological Chemistry, 2014, 395, 425-431.	1.2	2
8	A Recent Evolutionary Change Affects a Regulatory Element in the Human FOXP2 Gene. Molecular Biology and Evolution, 2013, 30, 844-852.	3.5	205
9	Polyglutamine tracts as modulators of transcriptional activation from yeast to mammals. Biological Chemistry, 2012, 393, 63-70.	1.2	47
10	The taste of heavy metals: Gene regulation by MTF-1. Biochimica Et Biophysica Acta - Molecular Cell Research, 2012, 1823, 1416-1425.	1.9	276
11	Dissection of Drosophila MTF-1 reveals a domain for differential target gene activation upon copper overload vs. copper starvation. International Journal of Biochemistry and Cell Biology, 2012, 44, 404-411.	1.2	20
12	Simian Virus 40 Strains with Novel Properties Generated by Replacing the Viral Enhancer with Synthetic Oligonucleotides. Journal of Virology, 2012, 86, 3135-3142.	1.5	4
13	A conserved cysteine cluster, essential for transcriptional activity, mediates homodimerization of human metal-responsive transcription factor-1 (MTF-1). Biochimica Et Biophysica Acta - Molecular Cell Research, 2012, 1823, 476-483.	1.9	30
14	Toxicity of Alzheimer's disease-associated Aβ peptide is ameliorated in a <i>Drosophila</i> model by tight control of zinc and copper availability. Biological Chemistry, 2011, 392, 919-926.	1.2	46
15	Distorted copper homeostasis with decreased sensitivity to cisplatin upon chaperone Atox1 deletion in Drosophila. BioMetals, 2011, 24, 445-453.	1.8	42
16	Characterization of MtnE, the fifth metallothionein member in Drosophila. Journal of Biological Inorganic Chemistry, 2011, 16, 1047-1056.	1.1	42
17	The parkin Mutant Phenotype in the Fly Is Largely Rescued by Metal-Responsive Transcription Factor (MTF-1). Molecular and Cellular Biology, 2011, 31, 2151-2161.	1.1	42
18	Human copper transporter Ctr1 is functional in Drosophila, revealing a high degree of conservation between mammals and insects. Journal of Biological Inorganic Chemistry, 2010, 15, 107-113.	1.1	28

#	Article	IF	CITATIONS
19	Extended lifespan of Drosophila parkin mutants through sequestration of redox-active metals and enhancement of anti-oxidative pathways. Neurobiology of Disease, 2010, 40, 82-92.	2.1	48
20	The Drosophila Copper Transporter Ctr1C Functions in Male Fertility. Journal of Biological Chemistry, 2010, 285, 17089-17097.	1.6	27
21	Zinc supplement greatly improves the condition of parkin mutant Drosophila. Biological Chemistry, 2010, 391, 513-518.	1.2	43
22	Role of Amyloid-Â Glycine 33 in Oligomerization, Toxicity, and Neuronal Plasticity. Journal of Neuroscience, 2009, 29, 7582-7590.	1.7	95
23	Metal-Responsive Transcription Factor 1 (MTF-1) Activity Is Regulated by a Nonconventional Nuclear Localization Signal and a Metal-Responsive Transactivation Domain. Molecular and Cellular Biology, 2009, 29, 6283-6293.	1.1	36
24	Mercury and cadmium trigger expression of the copper importer Ctr1B, which enables <i>Drosophila</i> to thrive on heavy metal-loaded food. Biological Chemistry, 2009, 390, 109-113.	1.2	14
25	Dumpy-30 family members as determinants of male fertility and interaction partners of metal-responsive transcription factor 1 (MTF-1) in Drosophila. BMC Developmental Biology, 2008, 8, 68.	2.1	12
26	Characterization of Metal-Responsive Transcription Factor (MTF-1) from the Giant Rodent Capybara Reveals Features in Common with Human as Well as with Small Rodents (Mouse, Rat). Short Communication. Chemistry and Biodiversity, 2008, 5, 1485-1494.	1.0	10
27	Drosophila bloom helicase maintains genome integrity by inhibiting recombination between divergent DNA sequences. Nucleic Acids Research, 2008, 36, 6907-6917.	6.5	13
28	Copper sensing function of Drosophila metal-responsive transcription factor-1 is mediated by a tetranuclear Cu(I) cluster. Nucleic Acids Research, 2008, 36, 3128-3138.	6.5	40
29	In Vivo Construction of Transgenes in Drosophila. Genetics, 2007, 175, 2019-2028.	1.2	9
30	Copper homeostasis in Drosophila by complex interplay of import, storage and behavioral avoidance. EMBO Journal, 2007, 26, 1035-1044.	3.5	68
31	Enhancer. , 2006, , 493-500.		0
32	The four members of theDrosophilametallothionein family exhibit distinct yet overlapping roles in heavy metal homeostasis and detoxification. Genes To Cells, 2006, 11, 647-658.	0.5	103
33	Copper homeostasis in eukaryotes: Teetering on a tightrope. Biochimica Et Biophysica Acta - Molecular Cell Research, 2006, 1763, 737-746.	1.9	201
34	A Family Knockout of All Four Drosophila Metallothioneins Reveals a Central Role in Copper Homeostasis and Detoxification. Molecular and Cellular Biology, 2006, 26, 2286-2296.	1.1	121
35	Transcriptome response to heavy metal stress in Drosophila reveals a new zinc transporter that confers resistance to zinc. Nucleic Acids Research, 2006, 34, 4866-4877.	6.5	138
36	Predisposition to mouse thymic lymphomas in response to ionizing radiation depends on variant alleles encoding metal-responsive transcription factor-1 (Mtf-1). Oncogene, 2005, 24, 399-406.	2.6	26

#	Article	IF	CITATIONS
37	The nucleotide sequence and a first generation gene transfer vector of species B human adenovirus serotype 3. Virology, 2005, 343, 283-298.	1.1	47
38	Metal-responsive transcription factor (MTF-1) handles both extremes, copper load and copper starvation, by activating different genes. Genes and Development, 2005, 19, 891-896.	2.7	133
39	The Distal Short Consensus Repeats 1 and 2 of the Membrane Cofactor Protein CD46 and Their Distance from the Cell Membrane Determine Productive Entry of Species B Adenovirus Serotype 35. Journal of Virology, 2005, 79, 10013-10022.	1.5	46
40	DNA looping induced by a transcriptional enhancer in vivo. Nucleic Acids Research, 2005, 33, 3743-3750.	6.5	73
41	Two major branches of anti-cadmium defense in the mouse: MTF-1/metallothioneins and glutathione. Nucleic Acids Research, 2005, 33, 5715-5727.	6.5	130
42	NF-κB contributes to transcription of placenta growth factor and interacts with metal responsive transcription factor-1 in hypoxic human cells. Biological Chemistry, 2005, 386, 865-872.	1.2	75
43	Loss of metal transcription factorâ€1 suppresses tumor growth through enhanced matrix deposition. FASEB Journal, 2004, 18, 1176-1184.	0.2	32
44	A Novel Cysteine Cluster in Human Metal-responsive Transcription Factor 1 Is Required for Heavy Metal-induced Transcriptional Activation in Vivo. Journal of Biological Chemistry, 2004, 279, 4515-4522.	1.6	48
45	An Efficient Method to Generate Chromosomal Rearrangements by Targeted DNA Double-Strand Breaks in Drosophila melanogaster. Genome Research, 2004, 14, 1382-1393.	2.4	26
46	Metal-responsive transcription factor-1 (MTF-1) selects different types of metal response elements at low vs. high zinc concentration. Biological Chemistry, 2004, 385, 623-32.	1.2	47
47	Metalâ€responsive transcription factorâ€1 (MTFâ€1) is essential for embryonic liver development and heavy metal detoxification in the adult liver. FASEB Journal, 2004, 18, 1071-1079.	0.2	84
48	Metal-responsive transcription factor (MTF-1) and heavy metal stress response in Drosophila and mammalian cells: a functional comparison. Biological Chemistry, 2004, 385, 597-603.	1.2	59
49	Knockout of 'metal-responsive transcription factor' MTF-1 in Drosophila by homologous recombination reveals its central role in heavy metal homeostasis. EMBO Journal, 2003, 22, 100-108.	3.5	126
50	Activity of Metal-Responsive Transcription Factor 1 by Toxic Heavy Metals and H2O2 In Vitro Is Modulated by Metallothionein. Molecular and Cellular Biology, 2003, 23, 8471-8485.	1.1	224
51	Heat and Heavy Metal Stress Synergize to Mediate Transcriptional Hyperactivation by Metal-responsive Transcription Factor MTF-1. Journal of Biological Chemistry, 2003, 278, 31879-31883.	1.6	48
52	Regulation of Metallothionein Transcription by the Metal-responsive Transcription Factor MTF-1. Journal of Biological Chemistry, 2002, 277, 20438-20445.	1.6	145
53	Open Reading Frame UL26 of Human Cytomegalovirus Encodes a Novel Tegument Protein That Contains a Strong Transcriptional Activation Domain. Journal of Virology, 2002, 76, 4836-4847.	1.5	70
54	Activation of gene expression by metal-responsive signal transduction pathways Environmental Health Perspectives, 2002, 110, 813-817.	2.8	44

#	Article	IF	CITATIONS
55	Nucleo-cytoplasmic Trafficking of Metal-regulatory Transcription Factor 1 Is Regulated by Diverse Stress Signals. Journal of Biological Chemistry, 2001, 276, 25487-25495.	1.6	119
56	The Drosophila Homolog of Mammalian Zinc Finger Factor MTF-1 Activates Transcription in Response to Heavy Metals. Molecular and Cellular Biology, 2001, 21, 4505-4514.	1.1	140
57	Conservation of Glutamine-Rich Transactivation Function between Yeast and Humans. Molecular and Cellular Biology, 2000, 20, 2774-2782.	1.1	60
58	Characterization of the mouse gene for the heavy metal-responsive transcription factor MTF-1. Cell Stress and Chaperones, 2000, 5, 196.	1.2	20
59	Wie werden unsere Gene ein- und ausgeschaltet?. , 2000, , 7-14.		Ο
60	Liver degeneration and embryonic lethality in mouse null mutants for the metal-responsive transcriptional activator MTF-1. , 1999, , 223-226.		2
61	Embryonic Liver Degeneration and Increased Sensitivity Towards Heavy Metal and H2O2 in Mice Lacking the Metal-Responsive Transcription Factor MTF-1. , 1999, , 339-352.		Ο
62	Homologous Recombination and DNA-End Joining Reactions in Zygotes and Early Embryos of Zebrafish <i>(Danio rerio) </i> and <i>Drosophila melanogaster</i> . Biological Chemistry, 1998, 379, 673-682.	1.2	59
63	Silencing of RNA Polymerases II and III-Dependent Transcription by the KRAB Protein Domain of KOX1, a Krüppel-Type Zinc Finger Factor. Biological Chemistry, 1997, 378, 669-77.	1.2	75
64	A Novel SR-Related Protein Specifically Interacts with the Carboxy-Terminal Domain (CTD) of RNA Polymerase through a Conserved Interaction Domain. Biological Chemistry, 1997, 378, 565-71.	1.2	21
65	Two versatile eukaryotic expression vectors permitting epitope tagging, radiolabelling and nuclear localisation of expressed proteins. Gene, 1996, 168, 165-167.	1.0	53
66	Improved "Activator Trap―Method for the Isolation of Transcriptional Activation Domains from Random DNA Fragments. BioTechniques, 1996, 21, 848-854.	0.8	7
67	Use of the Two-Hybrid System and Random Sonicated DNA to Identify the Interaction Domain of a Protein. BioTechniques, 1996, 21, 430-432.	0.8	18
68	Fine mapping of protein interaction surfaces with a PCR-based mutagenesis screen in yeast. Trends in Genetics, 1996, 12, 393-394.	2.9	5
69	B lymphocytes are impaired in mice lacking the transcriptional co-activator Bob1/OCA-B/OBF1. European Journal of Immunology, 1996, 26, 3214-3218.	1.6	132
70	Differential Sensitivity of Zinc Finger Transcription Factors MTF-1, Sp1 and Krox-20 to CpG Methylation of Their Binding Sites. Biological Chemistry Hoppe-Seyler, 1996, 377, 47-56.	1.4	31
71	Dramatic Changes in the Ratio of Homologous Recombination to Nonhomologous DNA-End Joining in Oocytes and Early Embryos of <i>Xenopus laevis</i> . Biological Chemistry Hoppe-Seyler, 1996, 377, 239-250.	1.4	39
72	Cloning and Characterization of the Murine B-Cell Specific Transcriptional Coactivator Bob1. Biological Chemistry Hoppe-Seyler, 1996, 377, 139-146.	1.4	8

#	Article	IF	CITATIONS
73	A B-cell coactivator of octamer-binding transcription factors. Nature, 1995, 373, 360-362.	13.7	307
74	RNA polymerase II C-terminal domain required for enhancer-driven transcription. Nature, 1995, 374, 660-662.	13.7	152
75	Periodicity of eight nucleotides in purine distribution around human genomic CpG dinucleotides. Somatic Cell and Molecular Genetics, 1995, 21, 91-98.	0.7	9
76	Analysis of the heavy metal-responsive transcription factor MTF-1 from human and mouse. Somatic Cell and Molecular Genetics, 1995, 21, 289-297.	0.7	31
77	Positive and Negative Regulation at the Herpes Simplex Virus ICP4 and ICPO TAATGARAT Motifs. Virology, 1995, 207, 107-116.	1.1	35
78	Review. Biological Chemistry Hoppe-Seyler, 1995, 376, 201-224.	1.4	28
79	Short Communication. Biological Chemistry Hoppe-Seyler, 1995, 376, 321-326.	1.4	12
80	Tissue-specific expression of a FMR1/β-galactosidase fusion gene in transgenic mice. Human Molecular Genetics, 1995, 4, 359-366.	1.4	70
81	Transcription factors interacting with herpes simplex virus α gene promoters in sensory neurons. Nucleic Acids Research, 1995, 23, 4978-4985.	6.5	43
82	Functional domains of the heavy metal-responsive transcription regulator MTF-1. Nucleic Acids Research, 1995, 23, 2277-2286.	6.5	157
83	Complex demethylation patterns at Sp1 binding sites in F9 embryonal carcinoma cells. FEBS Letters, 1995, 370, 170-174.	1.3	27
84	Transcriptional Regulation by Heavy Metals, Exemplified at the Metallothionein Genes. , 1995, , 206-240.		8
85	Strong transcriptional activators isolated from viral DNA by the â€~activator trap', a novel selection system in mammalian cells. Nucleic Acids Research, 1994, 22, 4031-4038.	6.5	14
86	Different Potential of Cellular and Viral Activators of Transcription Revealed in Oocytes and Early Embryos of <i>Xenopus laevis</i> . Biological Chemistry Hoppe-Seyler, 1994, 375, 105-112.	1.4	15
87	Short Introns Interrupting the Oct-2 POU Domain May Prevent Recombination between POU Family Genes without Interfering with Potential POU Domain â€̃Shuffling' in Evolution. Biological Chemistry Hoppe-Seyler, 1994, 375, 675-684.	1.4	21
88	Cloning, chromosomal mapping and characterization of the human metal-regulatory transcription factor MTF-1. Nucleic Acids Research, 1994, 22, 3167-3173.	6.5	196
89	The CpG-specific methylase Sssl has topoisomerase activity in the presence of Mg2+. Nucleic Acids Research, 1994, 22, 5354-5349.	6.5	45
90	A Minimal Transcription Activation Domain Consisting of a Specific Array of Aspartic Acid and Leucine Residues. Biological Chemistry Hoppe-Seyler, 1994, 375, 463-470.	1.4	33

#	Article	IF	CITATIONS
91	Direct interaction rescue, a novel filamentous phage technique to study protein — protein interactions. Nucleic Acids Research, 1994, 22, 5761-5762.	6.5	52
92	Conserved cysteine residues of Oct-2 POU domain confer sensitivity to oxidation but are dispensable for sequence-specific DNA binding. Biochimica Et Biophysica Acta Gene Regulatory Mechanisms, 1993, 1173, 141-146.	2.4	14
93	Evidence for erosion of mouse CpG islands during mammalian evolution. Somatic Cell and Molecular Genetics, 1993, 19, 543-555.	0.7	75
94	C-terminal domain (CTD) of RNA-polymerase II and N-terminal segment of the human TATA binding protein (TBP) can mediate remote and proximal transcriptional activation, respectively. Nucleic Acids Research, 1993, 21, 5609-5615.	6.5	35
95	Specific transcriptional activation in vitro by the herpes simplex virus protein VP16. Nucleic Acids Research, 1993, 21, 5570-5576.	6.5	19
96	Transcriptional activation by recombinant GAL4-VP16 in theXenopus oocyte. Nucleic Acids Research, 1993, 21, 2775-2775.	6.5	7
97	cDNA cloning of human N-Oct 3, a nervous-system specific POU domain transcription factor binding to the octamer DNA motif. Nucleic Acids Research, 1993, 21, 253-258.	6.5	83
98	In vitrotranscription complementation assay with miniextracts of transiently transfected COS-1 cells. Nucleic Acids Research, 1992, 20, 5855-5856.	6.5	11
99	POU-specific domain of Oct-2 factor confers â€~octamer' motif DNA binding specificity on heterologous Antennapedia homeodomain. FEBS Letters, 1992, 314, 361-365.	1.3	7
100	Expression in mammalian cells of a cloned gene encoding murine DNA methyltransferase. Gene, 1991, 109, 259-263.	1.0	26
101	Thionein (apometallothionein) can modulate DNA binding and transcription activation by zinc finger containing factor Spl. FEBS Letters, 1991, 279, 310-312.	1.3	240
102	Upstream box/TATA box order is the major determinant of the direction of transcription. Nucleic Acids Research, 1991, 19, 6699-6704.	6.5	53
103	Promoters with the octamer DNA motif (ATGCAAAT) can be ubiquitous or cell type-specific depending on binding affinity of the octamer site and Oct-factor concentration. Nucleic Acids Research, 1991, 19, 237-242.	6.5	94
104	Cloning of Sequence-Specific DNA-Binding Proteins by Screening λ cDNA Expression Libraries with Radiolabelled Binding-Site Probes. , 1991, , 233-244.		0
105	A factor known to bind to the endogenous Ig heavy chain enhancer only in lymphocytes is a ubiquitously active transcription factor. FEBS Journal, 1990, 187, 507-513.	0.2	4
106	A transcriptional terminator between enhancer and promoter does not affect remote transcriptional control. Somatic Cell and Molecular Genetics, 1990, 16, 351-360.	0.7	8
107	Transcriptional enhancers can act in trans. Trends in Genetics, 1990, 6, 300-304.	2.9	78
108	Octamer transcription factors and the cell typeâ€specificity of immunoglobulin gene expression. FASEB Journal, 1990, 4, 1444-1449.	0.2	108

#	Article	IF	CITATIONS
109	Astrocytes and glioblastoma cells express novel octamer-DNA binding proteins distinct from the ubiquitous Oct-1 and B cell type Oct-2 proteins. Nucleic Acids Research, 1990, 18, 5495-5503.	6.5	160
110	Immediate early protein of pseudorabies virus is a general transactivator but stimulates only suboptimally utilized promoters. Journal of Molecular Biology, 1990, 215, 301-311.	2.0	12
111	Synergistic activation of transcription by multiple binding sites for NF-κB even in absence of co-operative factor binding to DNA. Journal of Molecular Biology, 1990, 214, 373-380.	2.0	50
112	Eukaryotic expression vectors for the analysis of mutant proteins. Nucleic Acids Research, 1989, 17, 6418-6418.	6.5	126
113	Two closely spaced promoters are equally activated by a remote enhancer: evidence against a scanning model for enhancer action. Nucleic Acids Research, 1989, 17, 8931-8947.	6.5	22
114	Rapid test forin vivostability and DNA binding of mutated octamer binding proteins with â€~mini extracts', prepared from a transfected cells. Nucleic Acids Research, 1989, 17, 6420-6420.	6.5	78
115	Long-range activation of transcription by SV40 enhancer is affected by ?inhibitory? or ?permissive? DNA sequences between enhancer and promoter. Somatic Cell and Molecular Genetics, 1989, 15, 591-603.	0.7	13
116	How do different transcription factors binding the same DNA sequence sort out their jobs?. Trends in Genetics, 1989, 5, 37-39.	2.9	135
117	An enhancer stimulates transcription in Trans when attached to the promoter via a protein bridge. Cell, 1989, 58, 767-777.	13.5	204
118	Rapid detection of octamer binding proteins with â€~mini extracts', prepared from a small number of cells. Nucleic Acids Research, 1989, 17, 6419-6419.	6.5	4,030
119	Enhancer sequences and the regulation of gene transcription. FEBS Journal, 1988, 176, 485-495.	0.2	157
120	A hit-and-run mechanism for transcriptional activation?. Nature, 1988, 336, 427-428.	13.7	49
121	A cloned octamer transcription factor stimulates transcription from lymphoid–specific promoters in non–B cells. Nature, 1988, 336, 544-551.	13.7	535
122	Redundancy of information in enhancers as a principle of mammalian transcription control. Journal of Molecular Biology, 1988, 201, 81-90.	2.0	68
123	Heavy metal ions in transcription factors from HeLa cells: Sp1, but not octamer transcription factor requires zinc for DNA binding and for activator function. Nucleic Acids Research, 1988, 16, 5771-5781.	6.5	60
124	OVEC, a versatile system to study transcription in mammalian cells and cell-free extracts. Nucleic Acids Research, 1987, 15, 6787-6798.	6.5	295
125	Inducible and Constitutive Sequence Elements in the Enhancer of the Mouse Metallothionein-I Gene. Exs, 1987, 52, 415-422.	1.4	0
126	During B-cell differentiation enhancer activity and transcription rate of immunoglobulin heavy chain genes are high before mRNA accumulation. Cell, 1986, 45, 45-52.	13.5	116

#	Article	IF	CITATIONS
127	Simian virus 40 enhancer increases RNA polymerase density within the linked gene. Nature, 1985, 315, 75-77.	13.7	88
128	Enhancers and eukaryotic gene transcription. Trends in Genetics, 1985, 1, 224-230.	2.9	606
129	A novel expression selection approach allows precise mapping of the hepatitis B virus enhancer. Nucleic Acids Research, 1985, 13, 7457-7472.	6.5	111
130	Evidence for transient requirement of the IgH enhancer. Nucleic Acids Research, 1985, 13, 8901-8912.	6.5	51
131	High frequency of homologous recombination in mammalian cells between endogenous and introduced SV40 genomes. Cell, 1985, 43, 695-703.	13.5	115
132	Tissue-specific gene expression. Trends in Neurosciences, 1985, 8, 100-104.	4.2	12
133	A lymphocyte-specific enhancer in the mouse immunoglobulin κ gene. Nature, 1984, 307, 80-82.	13.7	449
134	Polyoma virus DNA replication requires an enhancer. Nature, 1984, 312, 242-246.	13.7	313
135	An SV40 "enhancer trap―incorporates exogenous enhancers or generates enhancers from its own sequences. Cell, 1984, 36, 983-992.	13.5	256
136	A lymphocyte-specific cellular enhancer is located downstream of the joining region in immunoglobulin heavy chain genes. Cell, 1983, 33, 729-740.	13.5	1,576
137	Transient Expression of Cloned Genes in Mammalian Cells. , 1983, , 19-32.		2
138	Transcriptional â€~enhancers' from SV40 and polyoma virus show a cell type preference. Nucleic Acids Research, 1982, 10, 7965-7976.	6.5	210
139	Expression of a $\hat{1}^2$ -globin gene is enhanced by remote SV40 DNA sequences. Cell, 1981, 27, 299-308.	13.5	1,721
140	A small segment of polyoma virus DNA enhances the expression of a cloned β-globin gene over a distance of 1400 base pairs. Nucleic Acids Research, 1981, 9, 6251-6264.	6.5	410
141	Molecular analysis of the histone gene cluster of Psammechinus miliaris: III. Polarity and asymmetry of the histone-coding sequences. Cell, 1976, 8, 479-484.	13.5	69
142	Molecular analysis of the histone gene cluster of Psammechinus miliaris: II. The arrangement of the five histone-coding and spacer sequences. Cell, 1976, 8, 471-478.	13.5	137
143	Molecular analysis of the histone gene cluster of Psammechinus miliaris: I. Fractionation and identification of five individual histone mRNAs. Cell, 1976, 8, 455-469.	13.5	83
144	Partial denaturation mapping of cloned histone DNA from the sea urchin Psammechinus miliaris. Nature, 1976, 264, 31-34.	13.7	62