Jiajia Zhou

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11491875/publications.pdf

Version: 2024-02-01

394421 677142 3,996 22 19 22 h-index citations g-index papers 22 22 22 5020 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	CD8+ T cells regulate tumour ferroptosis during cancer immunotherapy. Nature, 2019, 569, 270-274.	27.8	1,528
2	Radiotherapy and Immunotherapy Promote Tumoral Lipid Oxidation and Ferroptosis via Synergistic Repression of SLC7A11. Cancer Discovery, 2019, 9, 1673-1685.	9.4	566
3	Liver metastasis restrains immunotherapy efficacy via macrophage-mediated T cell elimination. Nature Medicine, 2021, 27, 152-164.	30.7	451
4	Controllable synthesis of dual-MOFs nanostructures for pH-responsive artemisinin delivery, magnetic resonance and optical dual-model imaging-guided chemo/photothermal combinational cancer therapy. Biomaterials, 2016, 100, 27-40.	11.4	245
5	Magnetically guided delivery of DHA and Fe ions for enhanced cancer therapy based on pH-responsive degradation of DHA-loaded Fe 3 O 4 @C@MIL-100(Fe) nanoparticles. Biomaterials, 2016, 107, 88-101.	11.4	194
6	In Situ Oneâ€Pot Synthesis of MOF–Polydopamine Hybrid Nanogels with Enhanced Photothermal Effect for Targeted Cancer Therapy. Advanced Science, 2018, 5, 1800287.	11.2	115
7	Epigenetic driver mutations in ARID1A shape cancer immune phenotype and immunotherapy. Journal of Clinical Investigation, 2020, 130, 2712-2726.	8.2	112
8	Core–Shell Metal-Organic Frameworks as Fe ²⁺ Suppliers for Fe ²⁺ -Mediated Cancer Therapy under Multimodality Imaging. Chemistry of Materials, 2017, 29, 3477-3489.	6.7	107
9	LIMIT is an immunogenic IncRNA in cancer immunity and immunotherapy. Nature Cell Biology, 2021, 23, 526-537.	10.3	96
10	Biodegradable Core-shell Dual-Metal-Organic-Frameworks Nanotheranostic Agent for Multiple Imaging Guided Combination Cancer Therapy. Theranostics, 2017, 7, 4605-4617.	10.0	85
11	Fe ₃ O ₄ @carbon@zeolitic imidazolate framework-8 nanoparticles as multifunctional pH-responsive drug delivery vehicles for tumor therapy in vivo. Journal of Materials Chemistry B, 2015, 3, 9033-9042.	5.8	77
12	Stanniocalcin 1 is a phagocytosis checkpoint driving tumor immune resistance. Cancer Cell, 2021, 39, 480-493.e6.	16.8	71
13	Novel Mn ₃ [Co(CN) ₆] ₂ @SiO ₂ @Ag Core–Shell Nanocube: Enhanced Twoâ€Photon Fluorescence and Magnetic Resonance Dualâ€Modal Imagingâ€Guided Photothermal and Chemoâ€therapy. Small, 2015, 11, 5956-5967.	10.0	65
14	The ubiquitin ligase MDM2 sustains STAT5 stability to control T cell-mediated antitumor immunity. Nature Immunology, 2021, 22, 460-470.	14.5	50
15	Photo-Enhanced Singlet Oxygen Generation of Prussian Blue-Based Nanocatalyst for Augmented Photodynamic Therapy. IScience, 2018, 9, 14-26.	4.1	46
16	Loss of Optineurin Drives Cancer Immune Evasion via Palmitoylation-Dependent IFNGR1 Lysosomal Sorting and Degradation. Cancer Discovery, 2021, 11, 1826-1843.	9.4	42
17	Mn3[Co(CN)6]2@SiO2 Core-shell Nanocubes: Novel bimodal contrast agents for MRI and optical imaging. Scientific Reports, 2013, 3, 2647.	3.3	37
18	Phospho-regulated ACAP4-Ezrin Interaction Is Essential for Histamine-stimulated Parietal Cell Secretion. Journal of Biological Chemistry, 2010, 285, 18769-18780.	3.4	32

#	Article	lF	CITATION
19	Signaling Scaffold Protein IQGAP1 Interacts with Microtubule Plus-end Tracking Protein SKAP and Links Dynamic Microtubule Plus-end to Steer Cell Migration. Journal of Biological Chemistry, 2015, 290, 23766-23780.	3.4	26
20	Spatial Control of Proton Pump H,K-ATPase Docking at the Apical Membrane by Phosphorylation-coupled Ezrin-Syntaxin 3 Interaction. Journal of Biological Chemistry, 2014, 289, 33333-33342.	3.4	20
21	The Microtubule Plus End Tracking Protein TIP150 Interacts with Cortactin to Steer Directional Cell Migration. Journal of Biological Chemistry, 2016, 291, 20692-20706.	3.4	19
22	Phosphorylation of PP1 Regulator Sds22 by PLK1 Ensures Accurate Chromosome Segregation. Journal of Biological Chemistry, 2016, 291, 21123-21136.	3.4	12