
Hiroyuki Miyoshi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1149013/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A key role for autophagy and the autophagy gene Atg16l1 in mouse and human intestinal Paneth cells. Nature, 2008, 456, 259-263.	27.8	1,341
2	Nonmyelinating Schwann Cells Maintain Hematopoietic Stem Cell Hibernation in the Bone Marrow Niche. Cell, 2011, 147, 1146-1158.	28.9	654
3	In vitro expansion and genetic modification of gastrointestinal stem cells in spheroid culture. Nature Protocols, 2013, 8, 2471-2482.	12.0	593
4	Intestinal Tumorigenesis in Compound Mutant Mice of both Dpc4(Smad4) and Apc Genes. Cell, 1998, 92, 645-656.	28.9	565
5	Berberine and Its More Biologically Available Derivative, Dihydroberberine, Inhibit Mitochondrial Respiratory Complex I. Diabetes, 2008, 57, 1414-1418.	0.6	470
6	Development of an enhanced human gastrointestinal epithelial culture system to facilitate patient-based assays. Gut, 2015, 64, 911-920.	12.1	410
7	Wnt5a Potentiates TGF-β Signaling to Promote Colonic Crypt Regeneration After Tissue Injury. Science, 2012, 338, 108-113.	12.6	402
8	The Role of Stromal Stem Cells in Tissue Regeneration and Wound Repair. Science, 2009, 324, 1666-1669.	12.6	304
9	SMAD4-deficient intestinal tumors recruit CCR1+ myeloid cells that promote invasion. Nature Genetics, 2007, 39, 467-475.	21.4	258
10	Targeted disruption of G protein-coupled bile acid receptor 1 (Gpbar1/M-Bar) in mice. Journal of Endocrinology, 2006, 191, 197-205.	2.6	253
11	Efficient colonic mucosal wound repair requires Trem2 signaling. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 256-261.	7.1	248
12	Autophagy proteins control goblet cell function by potentiating reactive oxygen species production. EMBO Journal, 2013, 32, 3130-3144.	7.8	216
13	Prostaglandin E2 promotes intestinal repair through an adaptive cellular response of theÂepithelium. EMBO Journal, 2017, 36, 5-24.	7.8	179
14	Frequent mutations that converge on the NFKBIZ pathway in ulcerative colitis. Nature, 2020, 577, 260-265.	27.8	168
15	Gastrointestinal hamartomatous polyposis in Lkb1 heterozygous knockout mice. Cancer Research, 2002, 62, 2261-6.	0.9	154
16	Lack of tumorigenesis in the mouse liver after adenovirus-mediated expression of a dominant stable mutant of beta-catenin. Cancer Research, 2002, 62, 1971-7.	0.9	137
17	Enhancing T Cell Receptor Stability in Rejuvenated iPSC-Derived T Cells Improves Their Use in Cancer Immunotherapy. Cell Stem Cell, 2018, 23, 850-858.e4.	11.1	110
18	Hepatocellular carcinoma caused by loss of heterozygosity in Lkb1 gene knockout mice. Cancer Research, 2002, 62, 4549-53.	0.9	104

Нігочикі Мічозні

#	Article	IF	CITATIONS
19	Inhibition of Cyclooxygenase-2 Prevents Chronic and Recurrent Cystitis. EBioMedicine, 2014, 1, 46-57.	6.1	92
20	Type I Interferons Link Viral Infection to Enhanced Epithelial Turnover and Repair. Cell Host and Microbe, 2015, 17, 85-97.	11.0	78
21	Chromosomal instability by β-catenin/TCF transcription in APC or β-catenin mutant cells. Oncogene, 2007, 26, 3511-3520.	5.9	74
22	lgf2bp1 Is Required for Full Induction of Ptgs2 mRNA in Colonic Mesenchymal Stem Cells in Mice. Gastroenterology, 2012, 143, 110-121.e10.	1.3	66
23	Suppression of Tubulin Polymerization by the LKB1-Microtubule-associated Protein/Microtubule Affinity-regulating Kinase Signaling. Journal of Biological Chemistry, 2007, 282, 23532-23540.	3.4	51
24	Lineage tracing and targeting of IL17RB ⁺ tuft cell-like human colorectal cancer stem cells. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 12996-13005.	7.1	49
25	A Targeted Mutation of Nkd1 Impairs Mouse Spermatogenesis. Journal of Biological Chemistry, 2005, 280, 2831-2839.	3.4	41
26	Accelerated onsets of gastric hamartomas and hepatic adenomas/carcinomas in Lkb1+/â^'p53â^'/â^' compound mutant mice. Oncogene, 2006, 25, 1816-1820.	5.9	32
27	Hepatocellular carcinoma development induced by conditional βâ€catenin activation in <i>Lkb1</i> ^{+/â^'} mice. Cancer Science, 2009, 100, 2046-2053.	3.9	32
28	LKB1 Suppresses p21-activated Kinase-1 (PAK1) by Phosphorylation of Thr109 in the p21-binding Domain. Journal of Biological Chemistry, 2010, 285, 18283-18290.	3.4	32
29	A Novel Strategy to Increase the Proliferative Potential of Adult Human β-Cells While Maintaining Their Differentiated Phenotype. PLoS ONE, 2013, 8, e66131.	2.5	32
30	An improved method for culturing patient-derived colorectal cancer spheroids. Oncotarget, 2018, 9, 21950-21964.	1.8	29
31	Simultaneous expression of COX-2 and mPCES-1 in mouse gastrointestinal hamartomas. British Journal of Cancer, 2004, 90, 701-704.	6.4	28
32	Butyrate and bioactive proteolytic form of Wnt-5a regulate colonic epithelial proliferation and spatial development. Scientific Reports, 2016, 6, 32094.	3.3	28
33	Arid1a is essential for intestinal stem cells through Sox9 regulation. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 1704-1713.	7.1	26
34	CDX Transcription Factors Positively Regulate Expression of Solute Carrier Family 5, Member 8 in the Colonic Epithelium. Gastroenterology, 2010, 138, 627-635.	1.3	24
35	Distinct Roles of HES1 in Normal Stem Cells and Tumor Stem-like Cells of the Intestine. Cancer Research, 2017, 77, 3442-3454.	0.9	23
36	The therapeutic potential of multiclonal tumoricidal T cells derived from tumor infiltrating lymphocyte-derived iPS cells. Communications Biology, 2021, 4, 694.	4.4	18

Нігочикі Мічозні

#	Article	IF	CITATIONS
37	Expression of metastasis suppressor gene <i><scp>AES</scp></i> driven by a Yin Yang (<scp>YY</scp>) element in a CpG island promoter and transcription factor <scp>YY</scp> 2. Cancer Science, 2016, 107, 1622-1631.	3.9	17
38	Wnt-expressing cells in the intestines: guides for tissue remodeling. Journal of Biochemistry, 2017, 161, 19-25.	1.7	17
39	A Chemosensitivity Study of Colorectal Cancer Using Xenografts of Patient-Derived Tumor-Initiating Cells. Molecular Cancer Therapeutics, 2018, 17, 2187-2196.	4.1	17
40	Transgenic mice that accept Luciferase―or GFPâ€expressing syngeneic tumor cells at high efficiencies. Genes To Cells, 2018, 23, 580-589.	1.2	15
41	Dual blockade of macropinocytosis and asparagine bioavailability shows synergistic anti-tumor effects on KRAS-mutant colorectal cancer. Cancer Letters, 2021, 522, 129-141.	7.2	12
42	MicroRNA-9-5p-CDX2 Axis: A Useful Prognostic Biomarker for Patients with Stage II/III Colorectal Cancer. Cancers, 2019, 11, 1891.	3.7	9
43	Chemosensitivity of Patient-Derived Cancer Stem Cells Identifies Colorectal Cancer Patients with Potential Benefit from FGFR Inhibitor Therapy. Cancers, 2020, 12, 2010.	3.7	9
44	EpCAM (CD326) Regulates Intestinal Epithelial Integrity and Stem Cells via Rho-Associated Kinase. Cells, 2021, 10, 256.	4.1	9
45	Identification of Aging-Associated Gene Expression Signatures That Precede Intestinal Tumorigenesis. PLoS ONE, 2016, 11, e0162300.	2.5	7
46	Counteracting stem cell expansion during wound repair. Cell Cycle, 2013, 12, 387-388.	2.6	5
47	The Young and the Wnt-less: Transplantable Fetal Intestinal Spheroids without Wnts. Cell Stem Cell, 2013, 13, 637-638.	11.1	3
48	Accurate diagnosis of mismatch repair deficiency in colorectal cancer using high-quality DNA samples from cultured stem cells. Oncotarget, 2018, 9, 37534-37548.	1.8	3
49	O-013 Defining the Basis of Epithelial Defects in Crohn's Using Intestinal Spheroid Culture. Inflammatory Bowel Diseases, 2016, 22, S1-S80.	1.9	1