Tim Wang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11489871/publications.pdf

Version: 2024-02-01

28	12,681	23	27
papers	citations	h-index	g-index
30	30	30	25762 citing authors
all docs	docs citations	times ranked	

#	Article	IF	CITATIONS
1	Genetic Screens in Human Cells Using the CRISPR-Cas9 System. Science, 2014, 343, 80-84.	6.0	2,414
2	Identification and characterization of essential genes in the human genome. Science, 2015, 350, 1096-1101.	6.0	1,461
3	Cellpose: a generalist algorithm for cellular segmentation. Nature Methods, 2021, 18, 100-106.	9.0	1,375
4	An Essential Role of the Mitochondrial Electron Transport Chain in Cell Proliferation Is to Enable Aspartate Synthesis. Cell, 2015, 162, 540-551.	13.5	1,024
5	Perturbation of m6A Writers Reveals Two Distinct Classes of mRNA Methylation at Internal and 5′ Sites. Cell Reports, 2014, 8, 284-296.	2.9	972
6	A Genome-wide CRISPR Screen in Toxoplasma Identifies Essential Apicomplexan Genes. Cell, 2016, 166, 1423-1435.e12.	13.5	667
7	Lysosomal amino acid transporter SLC38A9 signals arginine sufficiency to mTORC1. Science, 2015, 347, 188-194.	6.0	662
8	The CASTOR Proteins Are Arginine Sensors for the mTORC1 Pathway. Cell, 2016, 165, 153-164.	13.5	598
9	Metabolic determinants of cancer cell sensitivity to glucose limitation and biguanides. Nature, 2014, 508, 108-112.	13.7	585
10	Gene Essentiality Profiling Reveals Gene Networks and Synthetic Lethal Interactions with Oncogenic Ras. Cell, 2017, 168, 890-903.e15.	13.5	535
11	The Folliculin Tumor Suppressor Is a GAP for the RagC/D GTPases That Signal Amino Acid Levels to mTORC1. Molecular Cell, 2013, 52, 495-505.	4.5	436
12	Absolute Quantification of Matrix Metabolites Reveals the Dynamics of Mitochondrial Metabolism. Cell, 2016, 166, 1324-1337.e11.	13.5	367
13	Structural basis for leucine sensing by the Sestrin2-mTORC1 pathway. Science, 2016, 351, 53-58.	6.0	340
14	A genome-wide CRISPR screen identifies a restricted set of HIV host dependency factors. Nature Genetics, 2017, 49, 193-203.	9.4	290
15	MCT1-mediated transport of a toxic molecule is an effective strategy for targeting glycolytic tumors. Nature Genetics, 2013, 45, 104-108.	9.4	204
16	Systematic identification of signaling pathways with potential to confer anticancer drug resistance. Science Signaling, 2014, 7, ra121.	1.6	163
17	SFXN1 is a mitochondrial serine transporter required for one-carbon metabolism. Science, 2018, 362, .	6.0	154
18	A CRISPR screen identifies a pathway required for paraquat-induced cell death. Nature Chemical Biology, 2017, 13, 1274-1279.	3.9	138

#	Article	IF	CITATIONS
19	CHP1 Regulates Compartmentalized Glycerolipid Synthesis by Activating GPAT4. Molecular Cell, 2019, 74, 45-58.e7.	4.5	83
20	EASI-FISH for thick tissue defines lateral hypothalamus spatio-molecular organization. Cell, 2021, 184, 6361-6377.e24.	13.5	72
21	Single Guide RNA Library Design and Construction. Cold Spring Harbor Protocols, 2016, 2016, pdb.prot090803.	0.2	30
22	Metabolic determinants of cellular fitness dependent on mitochondrial reactive oxygen species. Science Advances, 2020, 6, .	4.7	28
23	Viral Packaging and Cell Culture for CRISPR-Based Screens. Cold Spring Harbor Protocols, 2016, 2016, pdb.prot090811.	0.2	27
24	Large-Scale Single Guide RNA Library Construction and Use for CRISPR–Cas9-Based Genetic Screens. Cold Spring Harbor Protocols, 2016, 2016, pdb.top086892.	0.2	20
25	Genome-Wide CRISPR/Cas9 Screening for Identification of Cancer Genes in Cell Lines. Methods in Molecular Biology, 2019, 1907, 125-136.	0.4	16
26	GCN2 adapts protein synthesis to scavenging-dependent growth. Cell Systems, 2022, 13, 158-172.e9.	2.9	12
27	A Genome-Wide CRISPR/Cas9-Based Screen Identifies Heparan Sulfate Proteoglycans as Ligands of Killer-Cell Immunoglobulin-Like Receptors. Frontiers in Immunology, 2021, 12, 798235.	2.2	2
28	Paring down to the essentials. Science, 2018, 362, 904-904.	6.0	0