
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11485486/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Porous carbon with uniformly distributed cobalt nanoparticles derived from ZIF-67 for efficient removal of vapor elemental mercury: A combined experimental and DFT study. Chemical Engineering Journal, 2022, 428, 132095.	12.7	26
2	Enrichment and occurrence form of rare earth elements during coal and coal gangue combustion. Environmental Science and Pollution Research, 2022, 29, 44709-44722.	5.3	7
3	Hierarchically porous biochar templated by in situ formed ZnO for rapid Pb2+ and Cd2+ adsorption in wastewater: Experiment and molecular dynamics study. Environmental Pollution, 2022, 302, 119107.	7.5	11
4	A novel modified method for the efficient removal of Pb and Cd from wastewater by biochar: Enhanced the ion exchange and precipitation capacity. Science of the Total Environment, 2021, 754, 142150.	8.0	245
5	Investigating the effect of flue gas temperature and excess air coefficient on the size distribution of condensable particulate matters. Fuel, 2021, 298, 120866.	6.4	8
6	Mercury speciation and size-specific distribution in filterable and condensable particulate matter from coal combustion. Science of the Total Environment, 2021, 787, 147597.	8.0	14
7	Impact of the mercury removal system using modified fly ash on particulate matter emission. Fuel, 2021, 301, 121054.	6.4	5
8	Catalytic conversion of mercury over Ce doped Mn/SAPO-34 catalyst: Sulphur tolerance and SO2/SO3 conversion. Journal of Hazardous Materials, 2020, 381, 120986.	12.4	33
9	Arsenic release and transformation in co-combustion of biomass and coal: Effect of mineral elements and volatile matter in biomass. Bioresource Technology, 2020, 297, 122388.	9.6	21
10	Speciation analysis of Hg, As, Pb, Cd, and Cr in fly ash at different ESP's hoppers. Fuel, 2020, 280, 118688.	6.4	16
11	Preadsorbed SO ₃ Inhibits Oxygen Atom Activity for Mercury Adsorption on Cu/Mn Doped CeO ₂ (110) Surface. Energy & Fuels, 2020, 34, 4734-4744.	5.1	12
12	High performance aqueous supercapacitor based on nitrogen-doped coal-based activated carbon electrode materials. Journal of Colloid and Interface Science, 2020, 580, 77-87.	9.4	91
13	Promotional effect of sulfur trioxide (SO3) on elemental mercury removal over Cu/ZSM-5 catalyst. Applied Surface Science, 2020, 511, 145604.	6.1	16
14	Combustion behaviour and chemical structure changes of enzyme-treated coal. Journal of Thermal Analysis and Calorimetry, 2020, 142, 1287-1294.	3.6	3
15	Distribution and emission of speciated volatile organic compounds from a coal-fired power plant with ultra-low emission technologies. Journal of Cleaner Production, 2020, 264, 121686.	9.3	26
16	A review on adsorbent/catalyst application for mercury removal in flue gas: Effect of sulphur oxides (SO2, SO3). Journal of Cleaner Production, 2020, 276, 124220.	9.3	31
17	Plasma Induced Addition of Active Functional Groups to Biochar for Elemental Mercury Removal. Plasma Chemistry and Plasma Processing, 2019, 39, 1449-1468.	2.4	17
18	The distribution of Pb(II)/Cd(II) adsorption mechanisms on biochars from aqueous solution: Considering the increased oxygen functional groups by HCl treatment. Bioresource Technology, 2019, 291, 121859.	9.6	141

#	Article	IF	CITATIONS
19	Distribution of Organic Compounds in Coal-Fired Power Plant Emissions. Energy & Fuels, 2019, 33, 5430-5437.	5.1	20
20	In-Situ Capture of Mercury in Coal-Fired Power Plants Using High Surface Energy Fly Ash. Environmental Science & Technology, 2019, 53, 7913-7920.	10.0	56
21	Reductions in Volatile Organic Compound Emissions from Coal-Fired Power Plants by Combining Air Pollution Control Devices and Modified Fly Ash. Energy & Fuels, 2019, 33, 2926-2933.	5.1	40
22	Optimized methods for preparing activated carbon from rock asphalt using orthogonal experimental design. Journal of Thermal Analysis and Calorimetry, 2019, 136, 1989-1999.	3.6	18
23	The effect of moisture on particulate matter measurements in an ultra-low emission power plant. Fuel, 2019, 238, 430-439.	6.4	25
24	Coeffect of Air Pollution Control Devices on Trace Element Emissions in an Ultralow Emission Coal-Fired Power Plant. Energy & Fuels, 2019, 33, 248-256.	5.1	38
25	Emission of volatile organic compounds (VOCs) during coal combustion at different heating rates. Fuel, 2018, 225, 554-562.	6.4	76
26	Full-Scale Demonstration of Enzyme-Treated Coal Combustion for Improved Energy Efficiency and Reduced Air Pollution. Energy & Fuels, 2018, 32, 6584-6594.	5.1	10
27	Increasing Recovery Ratios with an Improved European Community Bureau of Reference Method for Mercury Analysis in Flue Gas Desulfurization Gypsum. Energy & Fuels, 2018, 32, 8340-8347.	5.1	15
28	Oxidation of elemental mercury with non-thermal plasma coupled with a wet process. Fuel, 2017, 197, 320-325.	6.4	19
29	Study on the mercury captured by mechanochemical and bromide surface modification of coal fly ash. Fuel, 2017, 200, 427-434.	6.4	43
30	Effect of Coordinated Air Pollution Control Devices in Coal-Fired Power Plants on Arsenic Emissions. Energy & Fuels, 2017, 31, 7309-7316.	5.1	35
31	Kinetic studies of mercury adsorption in activated carbon modified by iodine steam vapor deposition method. Fuel, 2017, 188, 343-351.	6.4	62
32	Influences of NO on mercury adsorption characteristics for HBr modified fly ash. International Journal of Coal Geology, 2017, 170, 77-83.	5.0	22
33	Homogeneous mercury oxidation with bromine species released from HBr-modified fly ash. Fuel, 2016, 169, 58-67.	6.4	11
34	Fine particulate matter emission and size distribution characteristics in an ultra-low emission power plant. Fuel, 2016, 185, 863-871.	6.4	119
35	Volatilization of Arsenic During Coal Combustion Based on Isothermal Thermogravimetric Analysis at 600–1500 °C. Energy & Fuels, 2016, 30, 6790-6798.	5.1	43
36	Mercury sorption properties of HBr-modified fly ash in a fixed bed reactor. Journal of Thermal Analysis and Calorimetry, 2016, 124, 387-393.	3.6	7

#	Article	IF	CITATIONS
37	Synthesis of activated carbon from coal pitch for mercury removal in coal-fired power plants. Journal of Thermal Analysis and Calorimetry, 2016, 123, 851-860.	3.6	21
38	Mercury adsorption characteristics of HBr-modified fly ash in an entrained-flow reactor. Journal of Environmental Sciences, 2015, 33, 156-162.	6.1	36
39	Partitioning effect of mercury content and speciation in gypsum slurry as a function of time. Journal of Thermal Analysis and Calorimetry, 2015, 119, 1611-1618.	3.6	14
40	Evaluation of elemental mercury adsorption by fly ash modified with ammonium bromide. Journal of Thermal Analysis and Calorimetry, 2015, 119, 1663-1672.	3.6	37
41	Influence of biomass on coal combustion based on thermogravimetry and Fourier transform infrared spectroscopy. Journal of Thermal Analysis and Calorimetry, 2015, 122, 1289-1298.	3.6	16
42	Applications of thermal stepwise reactions on the co-gasification of coal and tobacco stems. Journal of Thermal Analysis and Calorimetry, 2014, 116, 1205-1212.	3.6	4
43	Lanthanum-promoted copper-based oxygen carriers for chemical looping combustion process. Journal of Thermal Analysis and Calorimetry, 2014, 116, 1257-1266.	3.6	11
44	Effect of modified fly ash with hydrogen bromide on the adsorption efficiency of elemental mercury. Journal of Thermal Analysis and Calorimetry, 2014, 116, 1189-1195.	3.6	15
45	Preparation of copper-based oxygen carrier supported by titanium dioxide. Journal of Thermal Analysis and Calorimetry, 2013, 114, 1089-1097.	3.6	10
46	Study on modification of Cu-based oxygen carrier for chemical looping combustion. Journal of Thermal Analysis and Calorimetry, 2013, 113, 1123-1128.	3.6	14
47	Synergistic effects of mineral matter on the combustion of coal blended with biomass. Journal of Thermal Analysis and Calorimetry, 2013, 113, 489-496.	3.6	16
48	Mercury Emission, Control and Measurement from Coal Combustion. , 2013, , 29-36.		1
49	Thermal characteristics of Cu-based oxygen carriers. Journal of Thermal Analysis and Calorimetry, 2012, 109, 1105-1109.	3.6	11
50	Investigation of asphalt (bitumen)-fuelled chemical looping combustion using durable copper-based oxygen carrier. Energy Procedia, 2011, 4, 457-464.	1.8	20
51	Mercury speciation and removal across full-scale wet FGD systems at coal-fired power plants. Science in China Series A: Mathematics, 2010, 16, 82-87.	0.2	5
52	Modeling mercury speciation in combustion flue gases using support vector machine: Prediction and evaluation. Journal of Hazardous Materials, 2010, 174, 244-250.	12.4	14
53	Study of elemental mercury re-emission through a lab-scale simulated scrubber. Fuel, 2010, 89, 2072-2080.	6.4	41
54	Visible-light photocatalytic activity of semiconductor composites supported by electrospun fiber. Composites Science and Technology, 2010, 70, 1469-1475.	7.8	36

#	Article	IF	CITATIONS
55	Effect of the existing air pollutant control devices on mercury emission in coal-fired power plants. Journal of Fuel Chemistry and Technology, 2010, 38, 641-646.	2.0	57
56	Particulate Matter Emissions from a Coal-Fired Power Plant. International Conference on Bioinformatics and Biomedical Engineering: [proceedings] International Conference on Bioinformatics and Biomedical Engineering, 2010, , .	0.0	11
57	Studies of the Fate of Sulfur Trioxide in Coal-Fired Utility Boilers Based on Modified Selected Condensation Methods. Environmental Science & Technology, 2010, 44, 3429-3434.	10.0	101
58	Enhancement of Mercury Capture by the Simultaneous Addition of Hydrogen Bromide (HBr) and Fly Ashes in a Slipstream Facility. Environmental Science & Technology, 2009, 43, 2812-2817.	10.0	55
59	Mercury Capture from Flue Gas Using Palladium Nanoparticle-Decorated Substrates as Injected Sorbent. Energy & Fuels, 2009, 23, 1512-1517.	5.1	25
60	Thermal properties of ethylene octene copolymer (Engage)/dimethyldioctadecyl quaternary ammonium chloride-modified montmorillonite clay nanocomposites. Journal of Materials Science, 2008, 43, 2555-2561.	3.7	25
61	Abatement of mercury emissions in the coal combustion process equipped with a Fabric Filter Baghouse. Fuel, 2008, 87, 3322-3330.	6.4	54
62	Experiences in Long-Term Evaluation of Mercury Emission Monitoring Systems. Energy & Fuels, 2008, 22, 3040-3049.	5.1	6
63	Mercury Emissions during Cofiring of Sub-bituminous Coal and Biomass (Chicken Waste, Wood,) Tj ETQq1 1 0.78 Science & Technology, 2008, 42, 9378-9384.	84314 rgB 10.0	T /Overlock 16
64	Impacts of Halogen Additions on Mercury Oxidation, in A Slipstream Selective Catalyst Reduction (SCR), Reactor When Burning Sub-Bituminous Coal. Environmental Science & Technology, 2008, 42, 256-261.	10.0	140
65	COMPARISON AND VALIDATION OF OHM AND SCEM MEASUREMENTS FOR A FULL-SCALE COAL-FIRED POWER PLANT. Chemical Engineering Communications, 2007, 194, 1596-1607.	2.6	7
66	Study of Mercury Oxidation by a Selective Catalytic Reduction Catalyst in a Pilot-Scale Slipstream Reactor at a Utility Boiler Burning Bituminous Coalâ€. Energy & Fuels, 2007, 21, 145-156.	5.1	104
67	Investigation of Mercury Transformation by HBr Addition in a Slipstream Facility with Real Flue Gas Atmospheres of Bituminous Coal and Powder River Basin Coal. Energy & Fuels, 2007, 21, 2719-2730.	5.1	23
68	Investigation of Chemical Looping Combustion by Solid Fuels. 2. Redox Reaction Kinetics and Product Characterization with Coal, Biomass, and Solid Waste as Solid Fuels and CuO as an Oxygen Carrier. Energy & Fuels, 2006, 20, 1845-1854.	5.1	180
69	Investigation of Chemical Looping Combustion by Solid Fuels. 1. Process Analysis. Energy & Fuels, 2006, 20, 1836-1844.	5.1	233
70	Thermoanalytical characterization of carbon/carbon hybrid material, Apple Woodceramics. Thermochimica Acta, 2006, 440, 75-80.	2.7	17
71	Gas Adsorption Properties of Woodceramics. Materials Transactions, 2005, 46, 2673-2678.	1.2	1
72	Factors Affecting Mercury Speciation in a 100-MW Coal-Fired Boiler with Low-NOxBurners. Energy & Fuels, 2005, 19, 800-806.	5.1	78

#	Article	IF	CITATIONS
73	Impact of Coal Chlorine on Mercury Speciation and Emission from a 100-MW Utility Boiler with Cold-Side Electrostatic Precipitators and Low-NOxBurners. Energy & Fuels, 2005, 19, 842-854.	5.1	47
74	Coal-like Thermal Behavior of a Carbon-Based Environmentally Benign New Material:  Woodceramics. Energy & Fuels, 2004, 18, 638-643.	5.1	10
75	Preparation, spectral and thermal studies of pyrazinecarboxylic acids and their hydrazinium salts. Journal of Chemical Sciences, 2003, 115, 103-111.	1.5	17
76	PP-PP-g-MAH-Org-MMT nanocomposites. I. Intercalation behavior and microstructure. Journal of Applied Polymer Science, 2003, 88, 3225-3231.	2.6	78
77	Poly(propylene)-poly(propylene)-grafted maleic anhydride-organic montmorillonite (PP-PP-g-MAH-Org-MMT) nanocomposites. II. Nonisothermal crystallization kinetics. Journal of Applied Polymer Science, 2003, 88, 3093-3099.	2.6	45
78	A study of the effect of surfactants on the properties of polystyrene-montmorillonite nanocomposites. Polymer Engineering and Science, 2003, 43, 214-222.	3.1	74
79	Polyaromatic Hydrocarbon Emissions in Fly Ashes from an Atmospheric Fluidized Bed Combustor Using Thermal Extraction Coupled with GC/TOF-MS. Energy & Fuels, 2002, 16, 330-337.	5.1	19
80	Thermal Stability of Quaternary Phosphonium Modified Montmorillonites. Chemistry of Materials, 2002, 14, 4837-4845.	6.7	359
81	Study of the processing chemistry of polyimides with thermogravimetry/Fourier transform infrared/mass spectrometry techniques. Journal of Applied Polymer Science, 2002, 83, 2213-2224.	2.6	7
82	Study of stability of high-temperature polyimides using TG/MS technique. Journal of Applied Polymer Science, 2002, 83, 1219-1227.	2.6	32
83	Thermal Degradation Chemistry of Alkyl Quaternary Ammonium Montmorillonite. Chemistry of Materials, 2001, 13, 2979-2990.	6.7	969
84	The Varying Characterization of Alkali Metals (Na, K) from Coal during the Initial Stage of Coal Combustion. Energy & Fuels, 2001, 15, 786-793.	5.1	90
85	A Study of Mercury Removal in FBC Systems Fired with High Chlorine Coals. Combustion Science and Technology, 2001, 164, 145-162.	2.3	12
86	Polycyclic aromatic hydrocarbon (PAH) emissions from a coal-fired pilot FBC system. Journal of Hazardous Materials, 2001, 84, 175-188.	12.4	109
87	Behavior of Chloride during Coal Combustion in an AFBC System. Energy & Fuels, 1999, 13, 585-591.	5.1	16
88	Chlorinated organic compounds evolved during the combustion of blends of refuse-derived fuels and coals. Journal of Theoretical Biology, 1997, 49, 1417-1422.	1.7	9
89	Studies of fly ash using thermal analysis techniques. Journal of Theoretical Biology, 1997, 49, 943-951.	1.7	9
90	Electrochemical detection of mercury adsorbed from flowing gas samples on porous carbon electrodes. Electroanalysis, 1997, 9, 1201-1204.	2.9	2

#	Article	IF	CITATIONS
91	Studying the mechanisms of ignition of coal particles by TG-DTA. Thermochimica Acta, 1996, 275, 149-158.	2.7	139
92	Behavior of Chlorine during Coal Pyrolysis. Energy & amp; Fuels, 1994, 8, 399-401.	5.1	45
93	Thermal characterization analysis of milkweed flos. Journal of Analytical and Applied Pyrolysis, 1992, 24, 147-161.	5.5	16
94	Volatile products of oxidative pyrolysis of wood: Influence of metal ions. Journal of Analytical and Applied Pyrolysis, 1990, 17, 261-273.	5.5	22
95	Influence of metal ions on volatile products of pyrolysis of wood. Journal of Analytical and Applied Pyrolysis, 1989, 16, 117-126.	5.5	103
96	First chemical events in pyrolysis of wood. Journal of Analytical and Applied Pyrolysis, 1988, 13, 221-231.	5.5	91