Jiannong Fang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11482508/publications.pdf Version: 2024-02-01

Ιμανιονό Γανό

#	Article	lF	CITATIONS
1	A 3D distinct lattice spring model for elasticity and dynamic failure. International Journal for Numerical and Analytical Methods in Geomechanics, 2011, 35, 859-885.	3.3	247
2	A numerical study of the SPH method for simulating transient viscoelastic free surface flows. Journal of Non-Newtonian Fluid Mechanics, 2006, 139, 68-84.	2.4	130
3	Improved SPH methods for simulating free surface flows of viscous fluids. Applied Numerical Mathematics, 2009, 59, 251-271.	2.1	124
4	A thermodynamically admissible reptation model for fast flows of entangled polymers. II. Model predictions for shear and extensional flows. Journal of Rheology, 2000, 44, 1293-1317.	2.6	108
5	A non-homogeneous constitutive model for human blood. Part 1. Model derivation and steady flow. Journal of Fluid Mechanics, 2008, 617, 327-354.	3.4	64
6	Flow over Hills: A Large-Eddy Simulation of the Bolund Case. Boundary-Layer Meteorology, 2013, 148, 177-194.	2.3	64
7	Large-Eddy Simulation of Very-Large-Scale Motions in the Neutrally Stratified Atmospheric Boundary Layer. Boundary-Layer Meteorology, 2015, 155, 397-416.	2.3	64
8	A non-homogeneous constitutive model for human blood. Journal of Non-Newtonian Fluid Mechanics, 2008, 155, 161-173.	2.4	43
9	A regularized Lagrangian finite point method for the simulation of incompressible viscous flows. Journal of Computational Physics, 2008, 227, 8894-8908.	3.8	42
10	Numerical Weather Prediction and Artificial Neural Network Coupling for Wind Energy Forecast. Energies, 2021, 14, 338.	3.1	36
11	Parallelization of the distinct lattice spring model. International Journal for Numerical and Analytical Methods in Geomechanics, 2013, 37, 51-74.	3.3	32
12	Fokker–Planck simulations of fast flows of melts and concentrated polymer solutions in complex geometries. Journal of Rheology, 2003, 47, 535-561.	2.6	29
13	Towards oscillation-free implementation of the immersed boundary method with spectral-like methods. Journal of Computational Physics, 2011, 230, 8179-8191.	3.8	26
14	Numerical simulations of pulsatile blood flow using a new constitutive model. Biorheology, 2006, 43, 637-60.	0.4	26
15	On the Truly Meshless Solution of Heat Conduction Problems in Heterogeneous Media. Numerical Heat Transfer, Part B: Fundamentals, 2009, 55, 1-13.	0.9	24
16	A coupled distinct lattice spring model for rock failure under dynamic loads. Computers and Geotechnics, 2012, 42, 1-20.	4.7	22
17	A Fokker–Planck-based numerical method for modelling non-homogeneous flows of dilute polymeric solutions. Journal of Non-Newtonian Fluid Mechanics, 2004, 122, 273-286.	2.4	18
18	Wind Energy Prediction in Highly Complex Terrain by Computational Fluid Dynamics. Energies, 2019, 12, 1311.	3.1	16

JIANNONG FANG

#	Article	IF	CITATIONS
19	On the high frequency oscillatory tube flow of healthy human blood. Journal of Non-Newtonian Fluid Mechanics, 2009, 163, 45-61.	2.4	9
20	Shifts in wind energy potential following land-use driven vegetation dynamics in complex terrain. Science of the Total Environment, 2018, 639, 374-384.	8.0	9
21	ON THE NUMERICAL SIMULATION OF FLOWS OF POLYMER SOLUTIONS USING HIGH-ORDER METHODS BASED ON THE FOKKER-PLANCK EQUATION. International Journal of Modern Physics B, 2003, 17, 9-14.	2.0	5
22	Towards more realistic kinetic models for concentrated solutions and melts. Journal of Non-Newtonian Fluid Mechanics, 2004, 122, 79-90.	2.4	4
23	Intercomparison of terrain-following coordinate transformation and immersed boundary methods in large-eddy simulation of wind fields over complex terrain. Journal of Physics: Conference Series, 2016, 753, 082008.	0.4	4
24	New constitutive equations derived from a kinetic model for melts and concentrated solutions of linear polymers. Rheologica Acta, 2005, 44, 577-590.	2.4	1