Muhammad Abbas

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11481966/publications.pdf

Version: 2024-02-01

759233 940533 16 779 12 16 citations h-index g-index papers 24 24 24 1076 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Selenium in chemistry and biochemistry in comparison to sulfur. Biological Chemistry, 2007, 388, 997-1006.	2.5	240
2	Synthesis and Selective Anticancer Activity of Organochalcogen Based Redox Catalysts. Journal of Medicinal Chemistry, 2010, 53, 6954-6963.	6.4	119
3	Traceless Tosylhydrazoneâ€Based Triazole Formation: A Metalâ€Free Alternative to Strainâ€Promoted Azide–Alkyne Cycloaddition. Angewandte Chemie - International Edition, 2012, 51, 5343-5346.	13.8	104
4	Exploring synthetic avenues for the effective synthesis of selenium- and tellurium-containing multifunctional redox agents. Organic and Biomolecular Chemistry, 2009, 7, 4753.	2.8	71
5	Multicomponent reactions for the synthesis of multifunctional agents with activity against cancer cells. Chemical Communications, 2009, , 4702.	4.1	63
6	One pot synthesis of selenocysteine containing peptoid libraries by Ugi multicomponent reactions in water. Chemical Communications, 2006, , 541-543.	4.1	47
7	Total synthesis and anti-leishmanial activity of R-(â^')-argentilactone. Tetrahedron Letters, 2001, 42, 7401-7403.	1.4	28
8	Bucharioside and buchariol from Salvia bucharica. Phytochemistry, 1999, 52, 1319-1322.	2.9	23
9	A convenient method for the synthesis of cyclic trithiocarbonates on carbohydrate scaffolds. Tetrahedron Letters, 2003, 44, 315-317.	1.4	19
10	Direct synthesis of sensitive selenocysteine peptides by the Ugi reaction. Organic and Biomolecular Chemistry, 2012, 10, 9330.	2.8	18
11	Eight New Diterpenoids fromEuphorbia decipiens. Helvetica Chimica Acta, 2001, 84, 1980-1988.	1.6	15
12	Three New Diterpenoids from Euphorbia cheiradenia. Helvetica Chimica Acta, 2000, 83, 2751-2755.	1.6	12
13	The Design of Multifunctional Antioxidants Against the Damaging Ingredients of Oxidative Stress. Phosphorus, Sulfur and Silicon and the Related Elements, 2008, 183, 863-888.	1.6	9
14	Methionine and seleno-methionine type peptide and peptoid building blocks synthesized by five-component five-center reactions. Chemical Communications, 2017, 53, 3777-3780.	4.1	7
15	An efficient approach to the synthesis of tri-substituted iminothiazolidenes and their effects on the human neuroblastoma cell line. Tetrahedron Letters, 2003, 44, 6107-6110.	1.4	3
16	Efficient One-Pot Formation of Substituted γ-Amino Acids. Letters in Organic Chemistry, 2011, 8, 320-324.	0.5	1