Alistair J Barber

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11481670/publications.pdf

Version: 2024-02-01

218677 395702 6,516 48 26 33 citations g-index h-index papers 48 48 48 5349 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Müller Glial Expression of REDD1 Is Required for Retinal Neurodegeneration and Visual Dysfunction in Diabetic Mice. Diabetes, 2022, 71, 1051-1062.	0.6	12
2	Neurodegeneration, Neuroprotection and Regeneration in the Zebrafish Retina. Cells, 2021, 10, 633.	4.1	21
3	The stress response protein REDD1 promotes diabetes-induced oxidative stress in the retina by Keap1-independent Nrf2 degradation. Journal of Biological Chemistry, 2020, 295, 7350-7361.	3.4	44
4	REDD1 Activates a ROS-Generating Feedback Loop in the Retina of Diabetic Mice., 2019, 60, 2369.		30
5	Deletion of the Akt/mTORC1 Repressor REDD1 Prevents Visual Dysfunction in a Rodent Model of Type 1 Diabetes. Diabetes, 2018, 67, 110-119.	0.6	36
6	Short-Term Administration of Astaxanthin Attenuates Retinal Changes in Diet-Induced Diabetic <i>Psammomys obesus </i> . Current Eye Research, 2018, 43, 1177-1189.	1.5	18
7	Proteomic Analysis of Early Diabetic Retinopathy Reveals Mediators of Neurodegenerative Brain Diseases., 2018, 59, 2264.		91
8	Neurodegeneration in diabetic retinopathy: Potential for novel therapies. Vision Research, 2017, 139, 82-92.	1.4	73
9	The Translational Repressor 4E-BP1 Contributes to Diabetes-Induced Visual Dysfunction., 2016, 57, 1327.		20
10	Nrf2 as molecular target for polyphenols: A novel therapeutic strategy in diabetic retinopathy. Critical Reviews in Clinical Laboratory Sciences, 2016, 53, 293-312.	6.1	65
11	Diabetic retinopathy: recent advances towards understanding neurodegeneration and vision loss. Science China Life Sciences, 2015, 58, 541-549.	4.9	51
12	Regulation of Fibroblast Growth Factor 2 Expression in Oxygen-Induced Retinopathy. Investigative Ophthalmology and Visual Science, 2015, 56, 207-215.	3.3	17
13	NRF2 plays a protective role in diabetic retinopathy in mice. Diabetologia, 2014, 57, 204-213.	6.3	149
14	Neurodegeneration in Diabetic Retinopathy. , 2012, , 189-209.		1
15	Post-Translational Processing of Synaptophysin in the Rat Retina Is Disrupted by Diabetes. PLoS ONE, 2012, 7, e44711.	2.5	21
16	The Significance of Vascular and Neural Apoptosis to the Pathology of Diabetic Retinopathy. , 2011, 52, 1156 .		361
17	An Integrated Approach to Diabetic Retinopathy Research. JAMA Ophthalmology, 2011, 129, 230.	2.4	83
18	Differential Roles of Hyperglycemia and Hypoinsulinemia in Diabetes Induced Retinal Cell Death: Evidence for Retinal Insulin Resistance. PLoS ONE, 2011, 6, e26498.	2.5	62

#	Article	IF	CITATIONS
19	Visual Dysfunction Associated with Diabetic Retinopathy. Current Diabetes Reports, 2010, 10, 380-384.	4.2	76
20	Effects of Ischemic Preconditioning and Bevacizumab on Apoptosis and Vascular Permeability Following Retinal Ischemia–Reperfusion Injury. , 2010, 51, 5920.		70
21	Whole genome assessment of the retinal response to diabetes reveals a progressive neurovascular inflammatory response. BMC Medical Genomics, 2008, 1, 26.	1.5	98
22	Retinal ganglion cells in diabetes. Journal of Physiology, 2008, 586, 4401-4408.	2.9	341
23	Diabetes downregulates presynaptic proteins and reduces basal synapsin I phosphorylation in rat retina. European Journal of Neuroscience, 2008, 28, 1-11.	2.6	87
24	Dendrite Remodeling and Other Abnormalities in the Retinal Ganglion Cells of Ins2 ^{Akita} Diabetic Mice., 2008, 49, 2635.		151
25	Neuroglial Dysfunction in Diabetic Retinopathy. , 2008, , 283-301.		1
26	The Neuronal Influence on Retinal Vascular Pathology. , 2007, , 108-120.		1
27	Loss of Cholinergic and Dopaminergic Amacrine Cells in Streptozotocin-Diabetic Rat and Ins2Akita-Diabetic Mouse Retinas., 2006, 47, 3143.		212
28	Elevated Glucose Changes the Expression of Ionotropic Glutamate Receptor Subunits and Impairs Calcium Homeostasis in Retinal Neural Cells., 2006, 47, 4130.		52
29	Diabetic Retinopathy. Diabetes, 2006, 55, 2401-2411.	0.6	673
30	The Ins2 ^{Akita} Mouse as a Model of Early Retinal Complications in Diabetes., 2005, 46, 2210.		442
31	In response to letter from Dr. G.B. Arden, Applied Vision Research Center, City University, London. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 2004, 28, 745-746.	4.8	O
32	A new view of diabetic retinopathy: a neurodegenerative disease of the eye. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 2003, 27, 283-290.	4.8	535
33	Characterization of insulin signaling in rat retina in vivo and ex vivo. American Journal of Physiology - Endocrinology and Metabolism, 2003, 285, E763-E774.	3.5	101
34	Mapping the Blood Vessels with Paracellular Permeability in the Retinas of Diabetic Rats. , 2003, 44, 5410.		98
35	Diabetic Retinopathy. Survey of Ophthalmology, 2002, 47, S253-S262.	4.0	499
36	Platelet-derived growth factor mediates tight junction redistribution and increases permeability in MDCK cells. Journal of Cellular Physiology, 2002, 193, 349-364.	4.1	63

#	Article	IF	CITATIONS
37	Role of specific aminotransferases in de novo glutamate synthesis and redox shuttling in the retina. Journal of Neuroscience Research, 2001, 66, 914-922.	2.9	81
38	Excessive Hexosamines Block the Neuroprotective Effect of Insulin and Induce Apoptosis in Retinal Neurons. Journal of Biological Chemistry, 2001, 276, 43748-43755.	3.4	162
39	Insulin Rescues Retinal Neurons from Apoptosis by a Phosphatidylinositol 3-Kinase/Akt-mediated Mechanism That Reduces the Activation of Caspase-3. Journal of Biological Chemistry, 2001, 276, 32814-32821.	3.4	279
40	Retinal neurodegeneration: early pathology in diabetes. Clinical and Experimental Ophthalmology, 2000, 28, 3-8.	2.6	313
41	Review Paper: New Insights into the Pathophysiology of Diabetic Retinopathy: Potential Cell-Specific Therapeutic Targets. Diabetes Technology and Therapeutics, 2000, 2, 601-608.	4.4	62
42	The molecular structure and function of the inner blood-retinal barrier., 2000,, 25-33.		0
43	Vascular Endothelial Growth Factor Induces Rapid Phosphorylation of Tight Junction Proteins Occludin and Zonula Occluden 1. Journal of Biological Chemistry, 1999, 274, 23463-23467.	3.4	575
44	Molecular Mechanisms of Vascular Permeability in Diabetic Retinopathy. Seminars in Ophthalmology, 1999, 14, 240-248.	1.6	202
45	The molecular structure and function of the inner blood-retinal barrier. Penn State Retina Research Group. Documenta Ophthalmologica, 1999, 97, 229-237.	2.2	64
46	Histamine reduces ZO-1 tight-junction protein expression in cultured retinal microvascular endothelial cells. Biochemical Journal, 1996, 320, 717-721.	3.7	87
47	Amnesia induced by 2-Deoxygalactose in the day-old chick: lateralization of effects in two different one-trial learning tasks. Behavioral and Neural Biology, 1991, 56, 77-88.	2.2	21
48	Glycoprotein Synthesis Is Necessary for Memory of Sickness-Induced Learning in Chicks. European Journal of Neuroscience, 1989, 1, 673-677.	2.6	15