Richard Hoogenboom

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1148116/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Poly(ethylene glycol) in Drug Delivery: Pros and Cons as Well as Potential Alternatives. Angewandte Chemie - International Edition, 2010, 49, 6288-6308.	13.8	2,857
2	Click Chemistry beyond Metal atalyzed Cycloaddition. Angewandte Chemie - International Edition, 2009, 48, 4900-4908.	13.8	791
3	Poly(2â€oxazoline)s: A Polymer Class with Numerous Potential Applications. Angewandte Chemie - International Edition, 2009, 48, 7978-7994.	13.8	762
4	Clicking polymers: a straightforward approach to novel macromolecular architectures. Chemical Society Reviews, 2007, 36, 1369.	38.1	736
5	Temperature responsive bio-compatible polymers based on poly(ethylene oxide) and poly(2-oxazoline)s. Progress in Polymer Science, 2012, 37, 686-714.	24.7	465
6	Microwave-Assisted Polymer Synthesis: State-of-the-Art and Future Perspectives. Macromolecular Rapid Communications, 2004, 25, 1739-1764.	3.9	451
7	Responsive biomimetic networks from polyisocyanopeptide hydrogels. Nature, 2013, 493, 651-655.	27.8	441
8	Supramolecular polymer networks: hydrogels and bulk materials. Chemical Society Reviews, 2016, 45, 4013-4031.	38.1	376
9	Thermoresponsive polymers with lower critical solution temperature: from fundamental aspects and measuring techniques to recommended turbidimetry conditions. Materials Horizons, 2017, 4, 109-116.	12.2	374
10	Polymeric multilayer capsules for drug delivery. Chemical Society Reviews, 2012, 41, 2867.	38.1	354
11	Microwave-Assisted Polymer Synthesis: Recent Developments in a Rapidly Expanding Field of Research. Macromolecular Rapid Communications, 2007, 28, 368-386.	3.9	349
12	Thiol–Yne Chemistry: A Powerful Tool for Creating Highly Functional Materials. Angewandte Chemie - International Edition, 2010, 49, 3415-3417.	13.8	337
13	The chemistry of tissue adhesive materials. Progress in Polymer Science, 2014, 39, 1375-1405.	24.7	337
14	Tuning the LCST of poly(2-oxazoline)s by varying composition and molecular weight: alternatives to poly(N-isopropylacrylamide)?. Chemical Communications, 2008, , 5758.	4.1	336
15	Thermoresponsive poly(oligo ethylene glycol acrylates). Progress in Polymer Science, 2014, 39, 1074-1095.	24.7	314
16	Tunable pH- and Temperature-Sensitive Copolymer Libraries by Reversible Additionâ^'Fragmentation Chain Transfer Copolymerizations of Methacrylates. Macromolecules, 2007, 40, 915-920.	4.8	311
17	Layer-by-layer preparation of polyelectrolyte multilayer membranes for separation. Polymer Chemistry, 2014, 5, 1817-1831.	3.9	286
18	Investigation of the Living Cationic Ring-Opening Polymerization of 2-Methyl-, 2-Ethyl-, 2-Nonyl-, and 2-Phenyl-2-oxazoline in a Single-Mode Microwave Reactorâ€. Macromolecules, 2005, 38, 5025-5034.	4.8	264

#	Article	IF	CITATIONS
19	Poly(2â€Oxazoline)s – Are They More Advantageous for Biomedical Applications Than Other Polymers?. Macromolecular Rapid Communications, 2012, 33, 1648-1662.	3.9	256
20	High Molecular Weight Supramolecular Polymers Containing Both Terpyridine Metal Complexes and Ureidopyrimidinone Quadruple Hydrogen-Bonding Units in the Main Chain. Journal of the American Chemical Society, 2005, 127, 2913-2921.	13.7	234
21	Bioinspired double network hydrogels: from covalent double network hydrogels <i>via</i> hybrid double network hydrogels to physical double network hydrogels. Materials Horizons, 2021, 8, 1173-1188.	12.2	230
22	Libraries of methacrylic acid and oligo(ethylene glycol) methacrylate copolymers with LCST behavior. Journal of Polymer Science Part A, 2008, 46, 7138-7147.	2.3	228
23	Thermoresponsive poly(2-oxazoline)s, polypeptoids, and polypeptides. Polymer Chemistry, 2017, 8, 24-40.	3.9	228
24	Clickable initiators, monomers and polymers in controlled radical polymerizations – a prospective combination in polymer science. Polymer Chemistry, 2010, 1, 1560.	3.9	219
25	The chemistry of poly(2-oxazoline)s. European Polymer Journal, 2017, 88, 451-469.	5.4	207
26	Synthesis and characterization of poly(2-ethyl 2-oxazoline)-conjugates with proteins and drugs: Suitable alternatives to PEG-conjugates?. Journal of Controlled Release, 2008, 125, 87-95.	9.9	204
27	Functional ruthenium(ii)- and iridium(iii)-containing polymers for potential electro-optical applications. Chemical Society Reviews, 2007, 36, 618-635.	38.1	191
28	Recent developments in the utilization of green solvents in polymer chemistry. Chemical Society Reviews, 2010, 39, 3317.	38.1	187
29	Poly(2â€oxazoline)s: A comprehensive overview of polymer structures and their physical properties. Polymer International, 2018, 67, 32-45.	3.1	183
30	Combinatorial Methods, Automated Synthesis and High-Throughput Screening in Polymer Research: Past and Present. Macromolecular Rapid Communications, 2003, 24, 15-32.	3.9	178
31	Single-Mode Microwave Ovens as New Reaction Devices: Accelerating the Living Polymerization of 2-Ethyl-2-Oxazoline. Macromolecular Rapid Communications, 2004, 25, 1895-1899.	3.9	178
32	Polymers with upper critical solution temperature behavior in alcohol/water solvent mixtures. Progress in Polymer Science, 2015, 48, 122-142.	24.7	173
33	Homogeneous Tritylation of Cellulose in 1-Butyl-3-methylimidazolium Chloride. Macromolecular Bioscience, 2007, 7, 440-445.	4.1	162
34	Aqueous polymeric sensors based on temperature-induced polymer phase transitions and solvatochromic dyes. Chemical Communications, 2011, 47, 8750.	4.1	161
35	Synthesis of star-shaped poly(ε-caprolactone) via â€~click' chemistry and â€~supramolecular click' chemistry. Chemical Communications, 2006, , 4010-4012	4.1	159
36	Cytotoxicity of polycations: Relationship of molecular weight and the hydrolytic theory of the mechanism of toxicity. International Journal of Pharmaceutics, 2017, 521, 249-258.	5.2	153

#	Article	IF	CITATIONS
37	Microwave-assisted synthesis and properties of a series of poly(2-alkyl-2-oxazoline)s. Designed Monomers and Polymers, 2005, 8, 659-671.	1.6	152
38	Soluble Polymeric Dual Sensor for Temperature and pHâ€Value. Angewandte Chemie - International Edition, 2009, 48, 5653-5656.	13.8	150
39	Advances and opportunities in the exciting world of azobenzenes. Nature Reviews Chemistry, 2022, 6, 51-69.	30.2	149
40	The Effect of Hofmeister Salts on the LCST Transition of Poly(2â€oxazoline)s with Varying Hydrophilicity. Macromolecular Rapid Communications, 2010, 31, 724-728.	3.9	143
41	Lower Critical Solution Temperature Behavior of Comb and Graft Shaped Poly[oligo(2-ethyl-2-oxazoline)methacrylate]s. Macromolecules, 2009, 42, 2965-2971.	4.8	137
42	Microwave-Assisted Synthesis of a 42-Membered Library of Diblock Copoly(2-oxazoline)s and Chain-Extended Homo Poly(2-oxazoline)s and Their Thermal Characterization. Macromolecules, 2005, 38, 7957-7966.	4.8	135
43	Microwave-Assisted Cationic Ring-Opening Polymerization of 2-Oxazolines:Â A Powerful Method for the Synthesis of Amphiphilic Triblock Copolymers. Macromolecules, 2006, 39, 4719-4725.	4.8	131
44	Thermo-Induced Self-Assembly of Responsive Poly(DMAEMA- <i>b</i> DEGMA) Block Copolymers into Multi- and Unilamellar Vesicles. Macromolecules, 2012, 45, 9292-9302.	4.8	129
45	Poly(2-oxazoline)s and click chemistry: A versatile toolbox toward multi-functional polymers. European Polymer Journal, 2015, 65, 98-111.	5.4	129
46	Bioinspired Poly(2-oxazoline)s. Polymers, 2011, 3, 467-488.	4.5	127
47	Water uptake of hydrophilic polymers determined by a thermal gravimetric analyzer with a controlled humidity chamber. Journal of Materials Chemistry, 2007, 17, 4864.	6.7	119
48	Solvent-Induced Morphological Transition in Core-Cross-Linked Block Copolymer Micelles. Journal of the American Chemical Society, 2006, 128, 3784-3788.	13.7	117
49	Combinatorial Methods, Automated Synthesis and High-Throughput Screening in Polymer Research: The Evolution Continues. Macromolecular Rapid Communications, 2004, 25, 21-33.	3.9	116
50	Tuning solution polymer properties by binary water–ethanolsolvent mixtures. Soft Matter, 2008, 4, 103-107.	2.7	110
51	Chemical Design of Nonâ€lonic Polymer Brushes as Biointerfaces: Poly(2â€oxazine)s Outperform Both Poly(2â€oxazoline)s and PEG. Angewandte Chemie - International Edition, 2018, 57, 11667-11672.	13.8	110
52	Parallel kinetic investigation of 2-oxazoline polymerizations with different initiators as basis for designed copolymer synthesis. Journal of Polymer Science Part A, 2004, 42, 1830-1840.	2.3	107
53	Libraries of Statistical Hydroxypropyl Acrylate Containing Copolymers with LCST Properties Prepared by NMP. Macromolecules, 2008, 41, 5132-5140.	4.8	107
54	2,2′:6′,2″-Terpyridine meets 2,6-bis(1H-1,2,3-triazol-4-yl)pyridine: tuning the electro-optical properties of ruthenium(ii) complexes. Dalton Transactions, 2009, , 787-794.	3.3	106

#	Article	IF	CITATIONS
55	Toward Main Chain Metalloâ€Terpyridyl Supramolecular Polymers: "The Metal Does the Trick― Macromolecular Rapid Communications, 2009, 30, 565-578.	3.9	105
56	Clickable Poly(2â€Oxazoline)s as Versatile Building Blocks. Macromolecular Chemistry and Physics, 2008, 209, 1887-1895.	2.2	104
57	Poly(2-oxazoline)s: Alive and Kicking. Macromolecular Chemistry and Physics, 2007, 208, 18-25.	2.2	103
58	The use of (metallo-)supramolecular initiators for living/controlled polymerization techniques. Chemical Society Reviews, 2006, 35, 622.	38.1	101
59	Dual Responsive Methacrylic Acid and Oligo(2-ethyl-2-oxazoline) Containing Graft Copolymers. Macromolecules, 2010, 43, 160-167.	4.8	97
60	Colorimetric Nanofibers as Optical Sensors. Advanced Functional Materials, 2017, 27, 1702646.	14.9	96
61	Thermoresponsive Poly(2-oxazoline) Block Copolymers Exhibiting Two Cloud Points: Complex Multistep Assembly Behavior. Macromolecules, 2012, 45, 4337-4345.	4.8	95
62	Thermoresponsive Poly(2â€oxazine)s. Macromolecular Rapid Communications, 2012, 33, 92-96.	3.9	95
63	Three-Fold Metal-Free Efficient ("Clickâ€) Reactions onto a Multifunctional Poly(2-oxazoline) Designer Scaffold. Macromolecules, 2011, 44, 6424-6432.	4.8	94
64	A Study of the Kinetic Hydrate Inhibitor Performance and Seawater Biodegradability of a Series of Poly(2-alkyl-2-oxazoline)s. Energy & Fuels, 2009, 23, 3665-3673.	5.1	93
65	Solubility and Thermoresponsiveness of PMMA in Alcohol-Water Solvent Mixtures. Australian Journal of Chemistry, 2010, 63, 1173.	0.9	91
66	Linear Poly(ethylene imine)s by Acidic Hydrolysis of Poly(2-oxazoline)s: Kinetic Screening, Thermal Properties, and Temperature-Induced Solubility Transitions. Macromolecules, 2010, 43, 927-933.	4.8	91
67	2â€{1 <i>H</i> â€1,2,3â€Triazolâ€4â€yl)â€Pyridine Ligands as Alternatives to 2,2′â€Bipyridines in Ruthe Chemistry - an Asian Journal, 2009, 4, 154-163.	nium(II) Co	omplexes.
68	Fast and "green―living cationic ring opening polymerization of 2-ethyl-2-oxazoline in ionic liquids under microwave irradiation. Chemical Communications, 2006, , 3797-3799.	4.1	87
69	Poly(2-oxazoline) Hydrogels for Controlled Fibroblast Attachment. Biomacromolecules, 2013, 14, 2724-2732.	5.4	86
70	Thermo-responsive Poly(methyl methacrylate)-block-poly(N-isopropylacrylamide) Block Copolymers Synthesized by RAFT Polymerization: Micellization and Gelation. Macromolecular Chemistry and Physics, 2006, 207, 1718-1726.	2.2	85
71	A Versatile Approach to Unimolecular Water-Soluble Carriers: ATRP of PEGMA with Hydrophobic Star-Shaped Polymeric Core Molecules as an Alternative for PEGylation. Macromolecules, 2009, 42, 1808-1816.	4.8	84
72	Programmable Polymerâ€Based Supramolecular Temperature Sensor with a Memory Function. Angewandte Chemie - International Edition, 2014, 53, 5044-5048.	13.8	84

#	Article	IF	CITATIONS
73	Poly(2-ethyl-2-oxazoline) conjugates with doxorubicin for cancer therapy: InÂvitro and inÂvivo evaluation and direct comparison to poly[N-(2-hydroxypropyl)methacrylamide] analogues. Biomaterials, 2017, 146, 1-12.	11.4	84
74	Supramolecular control over thermoresponsive polymers. Materials Today, 2016, 19, 44-55.	14.2	83
75	Microwave-Assisted Chemistry: a Closer Look at Heating Efficiency. Australian Journal of Chemistry, 2009, 62, 236.	0.9	82
76	PMMA based soluble polymeric temperature sensors based on UCST transition and solvatochromic dyes. Polymer Chemistry, 2010, 1, 1005.	3.9	81
77	Partial Hydrolysis of Poly(2â€ethylâ€2â€oxazoline) and Potential Implications for Biomedical Applications?. Macromolecular Bioscience, 2012, 12, 1114-1123.	4.1	81
78	Post-modification of poly(pentafluorostyrene): a versatile "click―method to create well-defined multifunctional graft copolymers. Chemical Communications, 2008, , 3516.	4.1	80
79	Poly(2-cyclopropyl-2-oxazoline): From Rate Acceleration by Cyclopropyl to Thermoresponsive Properties. Macromolecules, 2011, 44, 4057-4064.	4.8	78
80	Drug Delivery Systems Based on Poly(2â€Oxazoline)s and Poly(2â€Oxazine)s. Advanced Therapeutics, 2020, 3, 1900168.	3.2	78
81	Solubility behavior of amphiphilic block and random copolymers based on 2â€ethylâ€2â€oxazoline and 2â€nonylâ€2â€oxazoline in binary water–ethanol mixtures. Journal of Polymer Science Part A, 2009, 47, 515-522.	2.3	76
82	A schizophrenic gradient copolymer: switching and reversing poly(2-oxazoline) micelles based on UCST and subtle solvent changes. Soft Matter, 2009, 5, 3590.	2.7	76
83	μPET imaging of the pharmacokinetic behavior of medium and high molar mass 89 Zr-labeled poly(2-ethyl-2-oxazoline) in comparison to poly(ethylene glycol). Journal of Controlled Release, 2016, 235, 63-71.	9.9	76
84	One-pot synthesis of 2-phenyl-2-oxazoline-containing quasi-diblock copoly(2-oxazoline)s under microwave irradiation. Journal of Polymer Science Part A, 2007, 45, 416-422.	2.3	75
85	Poly(2â€oxazoline) Hydrogel Monoliths via Thiolâ€ene Coupling. Macromolecular Rapid Communications, 2012, 33, 1695-1700.	3.9	75
86	Accelerating the Living Polymerization of 2-Nonyl-2-oxazoline by Implementing a Microwave Synthesizer into a High-Throughput Experimentation Workflow. ACS Combinatorial Science, 2005, 7, 10-13.	3.3	73
87	Solvent Responsive Micelles Based on Block and Gradient Copoly(2-oxazoline)s. Macromolecules, 2008, 41, 1581-1583.	4.8	73
88	Tuning the morphologies of amphiphilic metallo-supramolecular triblock terpolymers: from spherical micelles to switchable vesicles. Soft Matter, 2009, 5, 84-91.	2.7	73
89	Synthesis and Structureâ^'Property Relationships of Random and Block Copolymers:  A Direct Comparison for Copoly(2-oxazoline)s. Macromolecules, 2007, 40, 5879-5886.	4.8	72
90	Hard Autonomous Selfâ€Healing Supramolecular Materials—A Contradiction in Terms?. Angewandte Chemie - International Edition, 2012, 51, 11942-11944.	13.8	72

#	Article	IF	CITATIONS
91	Synthesis and polymerization of boronic acid containing monomers. Polymer Chemistry, 2016, 7, 5484-5495.	3.9	72
92	Living Cationic Polymerizations Utilizing an Automated Synthesizer: High-Throughput Synthesis of Polyoxazolines. Macromolecular Rapid Communications, 2003, 24, 92-97.	3.9	71
93	Copolymerization of 2-Hydroxyethyl Acrylate and 2-Methoxyethyl Acrylate via RAFT: Kinetics and Thermoresponsive Properties. Macromolecules, 2010, 43, 7041-7047.	4.8	71
94	Block and Gradient Copolymers of 2-Hydroxyethyl Acrylate and 2-Methoxyethyl Acrylate via RAFT: Polymerization Kinetics, Thermoresponsive Properties, and Micellization. Macromolecules, 2013, 46, 1447-1460.	4.8	71
95	Poly(2-oxazoline) glycopolymers with tunable LCST behavior. Polymer Chemistry, 2011, 2, 1737.	3.9	70
96	Next Generation Hemostatic Materials Based on NHS-Ester Functionalized Poly(2-oxazoline)s. Biomacromolecules, 2017, 18, 2529-2538.	5.4	70
97	Poly(2â€oxazoline) Hydrogels: Stateâ€ofâ€theâ€Art and Emerging Applications. Macromolecular Bioscience, 2018, 18, e1800070.	4.1	70
98	Synthesis and Aqueous Micellization of Amphiphilic Tetrablock Ter- and Quarterpoly(2-oxazoline)s. Macromolecules, 2007, 40, 2837-2843.	4.8	69
99	The Next 100 Years of Polymer Science. Macromolecular Chemistry and Physics, 2020, 221, 2000216.	2.2	69
100	Defined High Molar Mass Poly(2â€Oxazoline)s. Angewandte Chemie - International Edition, 2018, 57, 15400-15404.	13.8	68
101	RAFT Polymerization of 1-Ethoxyethyl Acrylate:  A Novel Route toward Near-Monodisperse Poly(acrylic) Tj ET	Qq1_1 0.7	84314 rgBT /
102	Microwave-Assisted Homogeneous Polymerizations in Water-Soluble Ionic Liquids: An Alternative and Green Approach for Polymer Synthesis. Macromolecular Rapid Communications, 2007, 28, 456-464.	3.9	67
103	Asymmetrical supramolecular interactions as basis for complex responsive macromolecular architectures. Chemical Communications, 2008, , 155-162.	4.1	67
104	Multifunctional Poly(2â€oxazoline) Nanoparticles for Biological Applications. Macromolecular Rapid Communications, 2010, 31, 1869-1873.	3.9	67
105	Temperature Induced Solubility Transitions of Various Poly(2-oxazoline)s in Ethanol-Water Solvent Mixtures. Polymers, 2010, 2, 188-199.	4.5	67
106	Salt Plays a Pivotal Role in the Temperature-Responsive Aggregation and Layer-by-Layer Assembly of Polymer-Decorated Gold Nanoparticles. Chemistry of Materials, 2013, 25, 4297-4303.	6.7	67
107	A Fluorescent Thermometer Based on a Pyrene-Labeled Thermoresponsive Polymer. Sensors, 2010, 10, 7979-7990.	3.8	63
108	A triple thermoresponsive schizophrenic diblock copolymer. Polymer Chemistry, 2013, 4, 4322.	3.9	63

#	Article	IF	CITATIONS
109	Systematic investigation of alkyl sulfonate initiators for the cationic ring-opening polymerization of 2-oxazolines revealing optimal combinations of monomers and initiators. European Polymer Journal, 2015, 65, 298-304.	5.4	63
110	Synthesis and characterization of a series of diverse poly(2â€oxazoline)s. Journal of Polymer Science Part A, 2009, 47, 3829-3838.	2.3	62
111	Thermoresponsive giant biohybrid amphiphiles. Polymer Chemistry, 2011, 2, 333-340.	3.9	61
112	Dye Modification of Nanofibrous Silicon Oxide Membranes for Colorimetric HCl and NH ₃ Sensing. Advanced Functional Materials, 2016, 26, 5987-5996.	14.9	61
113	Poly(N-isopropylacrylamide) coated gold nanoparticles as colourimetric temperature and salt sensors. Polymer Chemistry, 2016, 7, 1705-1710.	3.9	61
114	Thermosensitive and Switchable Terpyridineâ€Functionalized Metalloâ€Supramolecular Poly(<i>N</i> â€isopropylacrylamide). Macromolecular Rapid Communications, 2008, 29, 1640-1647.	3.9	60
115	Tuning the upper critical solution temperature behavior of poly(methyl methacrylate) in aqueous ethanol by modification of an activated ester comonomer. Polymer Chemistry, 2012, 3, 1418.	3.9	60
116	Covalent Poly(2â€lsopropenylâ€2â€Oxazoline) Hydrogels with Ultrahigh Mechanical Strength and Toughness through Secondary Terpyridine Metalâ€Coordination Crosslinks. Advanced Functional Materials, 2019, 29, 1904886.	14.9	60
117	High-Throughput Synthesis and Screening of a Library of Random and Gradient Copoly(2-oxazoline)s. ACS Combinatorial Science, 2006, 8, 145-148.	3.3	59
118	Dual pH- and temperature-responsive RAFT-based block co-polymer micelles and polymer–protein conjugates with transient solubility. Polymer Chemistry, 2014, 5, 1140-1144.	3.9	59
119	Synthesis of Poly(2-ethyl-2-oxazoline)- <i>b</i> -poly(styrene) Copolymers via a Dual Initiator Route Combining Cationic Ring-Opening Polymerization and Atom Transfer Radical Polymerization. Macromolecules, 2008, 41, 5210-5215.	4.8	58
120	Accelerated living cationic ring-opening polymerization of a methyl ester functionalized 2-oxazoline monomer. Polymer Chemistry, 2015, 6, 514-518.	3.9	58
121	Side chain variations radically alter the diffusion of poly(2-alkyl-2-oxazoline) functionalised nanoparticles through a mucosal barrier. Biomaterials Science, 2016, 4, 1318-1327.	5.4	58
122	Blend electrospinning of dye-functionalized chitosan and poly(Îμ-caprolactone): towards biocompatible pH-sensors. Journal of Materials Chemistry B, 2016, 4, 4507-4516.	5.8	58
123	Automated parallel investigations/optimizations of the reversible addition-fragmentation chain transfer polymerization of methyl methacrylate. Journal of Polymer Science Part A, 2004, 42, 5775-5783.	2.3	57
124	Scale-Up of Microwave-Assisted Polymerizations in Continuous-Flow Mode: Cationic Ring-Opening Polymerization of 2-Ethyl-2-oxazoline. Macromolecular Rapid Communications, 2007, 28, 484-491.	3.9	57
125	Self-assembly of double hydrophobic block copolymers in water–ethanol mixtures: from micelles to thermoresponsive micellar gels. Chemical Communications, 2009, , 5582.	4.1	57
126	Screening the Synthesis of 2-Substituted-2-oxazolines. ACS Combinatorial Science, 2009, 11, 274-280.	3.3	57

#	Article	IF	CITATIONS
127	Fast and accurate partial hydrolysis of poly(2-ethyl-2-oxazoline) into tailored linear polyethylenimine copolymers. Polymer Chemistry, 2014, 5, 4957-4964.	3.9	56
128	Polymer-protein conjugation <i>via</i> a â€~grafting to' approach – a comparative study of the performance of protein-reactive RAFT chain transfer agents. Polymer Chemistry, 2015, 6, 5602-5614.	3.9	56
129	Mixed iridium(III) and ruthenium(II) polypyridyl complexes containing poly(?-caprolactone)-bipyridine macroligands. Journal of Polymer Science Part A, 2004, 42, 4153-4160.	2.3	55
130	Optimization of the nitroxide-mediated radical polymerization conditions for styrene andtert-butyl acrylate in an automated parallel synthesizer. Journal of Polymer Science Part A, 2006, 44, 6202-6213.	2.3	55
131	Functional Poly(2-oxazoline)s by Direct Amidation of Methyl Ester Side Chains. Macromolecules, 2015, 48, 3531-3538.	4.8	55
132	Automated Parallel Temperature Optimization and Determination of Activation Energy for the Living Cationic Polymerization of 2-Ethyl-2-oxazoline. Macromolecular Rapid Communications, 2003, 24, 98-103.	3.9	54
133	Initiator effect on the cationic ringâ€opening copolymerization of 2â€ethylâ€2â€oxazoline and 2â€phenylâ€2â€oxazoline. Journal of Polymer Science Part A, 2008, 46, 4804-4816.	2.3	54
134	Advanced supramolecular initiator for nitroxide-mediated polymerizations containing both metal-ion coordination and hydrogen-bonding sites. Chemical Communications, 2009, , 3386.	4.1	54
135	Demixing and Remixing Kinetics of Poly(2-isopropyl-2-oxazoline) (PIPOZ) Aqueous Solutions Studied by Modulated Temperature Differential Scanning Calorimetry. Macromolecules, 2010, 43, 6853-6860.	4.8	54
136	Colorimetric Logic Gates Based on Poly(2â€alkylâ€2â€oxazoline)â€Coated Gold Nanoparticles. Advanced Functional Materials, 2015, 25, 2511-2519.	14.9	54
137	Preparation of Methacrylate End-Functionalized Poly(2-ethyl-2-oxazoline) Macromonomers. Designed Monomers and Polymers, 2009, 12, 149-165.	1.6	53
138	High-Throughput Investigation of Polymerization Kinetics by Online Monitoring of GPC and GC. Macromolecular Rapid Communications, 2004, 25, 237-242.	3.9	52
139	High-throughput experimentation in synthetic polymer chemistry: From RAFT and anionic polymerizations to process development. Applied Surface Science, 2006, 252, 2555-2561.	6.1	52
140	Rational Design of an Amorphous Poly(2-oxazoline) with a Low Glass-Transition Temperature: Monomer Synthesis, Copolymerization, and Properties. Macromolecules, 2010, 43, 4098-4104.	4.8	52
141	Tuning the LCST of poly(2â€cyclopropylâ€2â€oxazoline) via gradient copolymerization with 2â€ethylâ€2â€oxazoline. Journal of Polymer Science Part A, 2014, 52, 3118-3122.	2.3	52
142	Full and partial hydrolysis of poly(2-oxazoline)s and the subsequent post-polymerization modification of the resulting polyethylenimine (co)polymers. Polymer Chemistry, 2018, 9, 4968-4978.	3.9	52
143	Are <i>o</i> â€nitrobenzyl (meth)acrylate monomers polymerizable by controlledâ€radical polymerization?. Journal of Polymer Science Part A, 2009, 47, 6504-6513.	2.3	51
144	A Green Approach for the Synthesis and Thiolâ€ene Modification of Alkene Functio1489lized Poly(2â€oxazoline)s. Macromolecular Rapid Communications, 2011, 32, 1484-1489.	3.9	51

#	Article	IF	CITATIONS
145	Block Copolymers of Poly(2-oxazoline)s and Poly(meth)acrylates: A Crossover between Cationic Ring-Opening Polymerization (CROP) and Reversible Addition–Fragmentation Chain Transfer (RAFT). ACS Macro Letters, 2012, 1, 776-779.	4.8	51
146	Synthesis and Characterization of Novel Substituted 3,6-Di(2-pyridyl)pyridazine Metal-Coordinating Ligands. European Journal of Organic Chemistry, 2003, 2003, 4887-4896.	2.4	50
147	Application of a Parallel Synthetic Approach in Atom-Transfer Radical Polymerization: Set-Up and Feasibility Demonstration. Macromolecular Rapid Communications, 2003, 24, 81-86.	3.9	50
148	Combinatorial and high-throughput approaches in polymer science. Measurement Science and Technology, 2005, 16, 203-211.	2.6	50
149	Microwave-assisted cationic ring-opening polymerization of a soy-based 2-oxazoline monomer. Green Chemistry, 2006, 8, 895.	9.0	50
150	Screening for Modulatory Effects on Steroidogenesis Using the Human H295R Adrenocortical Cell Line: A Metabolomics Approach. Chemical Research in Toxicology, 2012, 25, 1720-1731.	3.3	50
151	The Effect of Temperature on the Living Cationic Polymerization of 2-Phenyl-2-oxazoline Explored Utilizing an Automated Synthesizer. Macromolecular Rapid Communications, 2004, 25, 339-343.	3.9	49
152	Thermal, Mechanical, and Surface Properties of Poly(2â€∢i>Nâ€alkylâ€2â€oxazoline)s. Macromolecular Chemistry and Physics, 2010, 211, 2443-2448.	2.2	49
153	Temperature‣witchable Assembly of Supramolecular Virus–Polymer Complexes. Advanced Functional Materials, 2011, 21, 2012-2019.	14.9	49
154	Tuning the LCST and UCST Thermoresponsive Behavior of Poly(<i>N,N</i> â€dimethylaminoethyl) Tj ETQ Copolymerization. Macromolecular Rapid Communications, 2015, 36, 633-639.)q0 0 0 rgE 3.9	T /Overlock 49
155	Degradable Ketal-Based Block Copolymer Nanoparticles for Anticancer Drug Delivery: A Systematic Evaluation. Biomacromolecules, 2015, 16, 336-350.	5.4	49
156	Halochromic properties of sulfonphthaleine dyes in a textile environment: The influence of substituents. Dyes and Pigments, 2016, 124, 249-257.	3.7	49
157	Controlled thermoreversible transfer of poly(oxazoline) micelles between an ionic liquid and water. Chemical Communications, 2008, , 2753.	4.1	48
158	Aqueous gelation of ionic liquids: reverse thermoresponsive ion gels. Chemical Communications, 2010, 46, 6971.	4.1	48
159	Responsive Glyco-poly(2-oxazoline)s: Synthesis, Cloud Point Tuning, and Lectin Binding. Biomacromolecules, 2011, 12, 2591-2600.	5.4	48
160	Cu(II)-Mediated ATRP of MMA by Using a Novel Tetradentate Amine Ligand with Oligo(ethylene glycol) Pendant Groups. Macromolecular Rapid Communications, 2007, 28, 1161-1166.	3.9	47
161	Pore-covered thermoresponsive membranes for repeated on-demand drug release. Journal of Membrane Science, 2008, 322, 243-248.	8.2	47
162	Acetyl Halide Initiator Screening for the Cationic Ringâ€Opening Polymerization of 2â€Ethylâ€2â€Oxazoline. Macromolecular Chemistry and Physics, 2008, 209, 794-800.	2.2	47

#	Article	IF	CITATIONS
163	Polymeric nanocontainers with high loading capacity of hydrophobic drugs. Soft Matter, 2009, 5, 1662.	2.7	46
164	Continuous poly(2-oxazoline) triblock copolymer synthesis in a microfluidic reactor cascade. Chemical Communications, 2015, 51, 11701-11704.	4.1	46
165	Visualization and design of the functional group distribution during statistical copolymerization. Nature Communications, 2019, 10, 3641.	12.8	46
166	The fast and the curious: High-throughput experimentation in synthetic polymer chemistry. Journal of Polymer Science Part A, 2003, 41, 2425-2434.	2.3	45
167	l-Lactide Polymerization Utilizing a Hydroxy-Functionalized 3,6-Bis(2-pyridyl)pyridazine as Supramolecular (Co)initiator:  Construction of Polymeric [2 × 2] Grids. Macromolecules, 2003, 36, 4743-4749.	4.8	45
168	Accelerated pressure synthesis and characterization of 2-oxazoline block copolymers. Polymer, 2006, 47, 75-84.	3.8	45
169	Scale-up of Microwave-Assisted Polymerizations in Batch Mode: The Cationic Ring-Opening Polymerization of 2-Ethyl-2-oxazoline. Macromolecular Rapid Communications, 2006, 27, 1556-1560.	3.9	45
170	Unexpected reactivity for the RAFT copolymerization of oligo(ethylene glycol) methacrylates. Journal of Polymer Science Part A, 2009, 47, 2811-2820.	2.3	45
171	Aqueous solution behavior of combâ€shaped poly(2â€ethylâ€2â€oxazoline). Journal of Polymer Science Part A, 2013, 51, 139-148.	2.3	45
172	Dye immobilization in halochromic nanofibers through blend electrospinning of a dye-containing copolymer and polyamide-6. Polymer Chemistry, 2015, 6, 2685-2694.	3.9	45
173	Poly(cyclic imino ether)s Beyond 2‣ubstitutedâ€2â€oxazolines. Macromolecular Rapid Communications, 2011, 32, 1419-1441.	3.9	44
174	Hydrogen Bonded Multilayer Films Based on Poly(2â€oxazoline)s and Tannic Acid. Advanced Healthcare Materials, 2014, 3, 2040-2047.	7.6	44
175	UCST behavior of polyampholytes based on stoichiometric RAFT copolymerization of cationic and anionic monomers. Chemical Communications, 2015, 51, 70-73.	4.1	44
176	Block and Gradient Copoly(2-oxazoline) Micelles: Strikingly Different on the Inside. Journal of Physical Chemistry Letters, 2017, 8, 3800-3804.	4.6	44
177	Light-emitting iridium(iii) and ruthenium(ii) polypyridyl complexes containing quadruple hydrogen-bonding moieties. Dalton Transactions, 2006, , 1636-1644.	3.3	43
178	Nitroxideâ€Mediated Copolymerization of 2â€Hydroxyethyl Acrylate and 2â€Hydroxypropyl Acrylate: Copolymerization Kinetics and Thermoresponsive Properties. Macromolecular Rapid Communications, 2009, 30, 2042-2048.	3.9	43
179	Synthesis of poly(2â€oxazoline)s with side chain methyl ester functionalities: Detailed understanding of living copolymerization behavior of methyl ester containing monomers with 2â€alkylâ€2â€oxazolines. Journal of Polymer Science Part A, 2015, 53, 2649-2661.	2.3	43
180	Concentration effects in the cationic ring-opening polymerization of 2-ethyl-2-oxazoline inN,N-dimethylacetamide. Journal of Polymer Science Part A, 2005, 43, 1487-1497.	2.3	42

#	Article	IF	CITATIONS
181	Discovering new block terpolymer micellar morphologies. Chemical Communications, 2010, 46, 6455.	4.1	42
182	Selective partial hydrolysis of amphiphilic copoly(2-oxazoline)s as basis for temperature and pH responsive micelles. Polymer Chemistry, 2011, 2, 313-322.	3.9	42
183	Thermoresponsive cyclic peptide – poly(2-ethyl-2-oxazoline) conjugate nanotubes. Chemical Communications, 2013, 49, 6522.	4.1	42
184	Automated MALDI-TOF-MS Sample Preparation in Combinatorial Polymer Research. ACS Combinatorial Science, 2003, 5, 369-374.	3.3	41
185	Nanoporous Hydrogen Bonded Polymeric Microparticles: Facile and Economic Production of Cross Presentation Promoting Vaccine Carriers. Advanced Functional Materials, 2014, 24, 4634-4644.	14.9	41
186	Multireactive Poly(2-oxazoline) Nanofibers through Electrospinning with Crosslinking on the Fly. ACS Macro Letters, 2016, 5, 676-681.	4.8	41
187	Ultrathin Single Bilayer Separation Membranes Based on Hyperbranched Sulfonated Poly(aryleneoxindole). Advanced Functional Materials, 2017, 27, 1605068.	14.9	41
188	Cyclic Polymers: From Scientific Curiosity to Advanced Materials for Gene Delivery and Surface Modification. Angewandte Chemie - International Edition, 2017, 56, 7034-7036.	13.8	41
189	Structural Diversification of Pillar[<i>n</i>]arene Macrocycles. Angewandte Chemie - International Edition, 2020, 59, 6314-6316.	13.8	41
190	Characterization of a Poly(2-oxazoline) Library by High-Throughput, Automated Contact-Angle Measurements and Surface-Energy Calculations. Macromolecular Rapid Communications, 2004, 25, 1958-1962.	3.9	40
191	Externally Triggered Glass Transition Switch for Localized Onâ€Demand Drug Delivery. Angewandte Chemie - International Edition, 2009, 48, 9867-9870.	13.8	40
192	Synthesis, Microwaveâ€Assisted Polymerization, and Polymer Properties of Fluorinated 2â€Phenylâ€2â€oxazolines: A Systematic Study. Chemistry - A European Journal, 2008, 14, 10396-10407.	3.3	39
193	Synthesis and crystal structures of multifunctional tosylates as basis for star-shaped poly(2-ethyl-2-oxazoline)s. Beilstein Journal of Organic Chemistry, 2010, 6, 773-783.	2.2	39
194	Thermoreversible ionogels with tunable properties via aqueous gelation of an amphiphilic quaternary ammonium oligoether-based ionic liquid. Journal of Materials Chemistry, 2010, 20, 8279.	6.7	39
195	Sulfolane as Common Rate Accelerating Solvent for the Cationic Ring-Opening Polymerization of 2-Oxazolines. ACS Macro Letters, 2015, 4, 825-828.	4.8	39
196	Versatile side chain modification <i>via</i> isocyanide-based multicomponent reactions: tuning the LCST of poly(2-oxazoline)s. Polymer Chemistry, 2015, 6, 3828-3836.	3.9	39
197	Starâ€5haped Polyacrylates: Highly Functionalized Architectures via CuAAC Click Conjugation. Macromolecular Rapid Communications, 2009, 30, 2049-2055.	3.9	38
198	Acid‣abile Thermoresponsive Copolymers That Combine Fast pHâ€Triggered Hydrolysis and High Stability under Neutral Conditions. Angewandte Chemie - International Edition, 2015, 54, 10879-10883.	13.8	38

#	Article	IF	CITATIONS
199	Synthesis of pH―and thermoresponsive poly(2â€ <i>n</i> â€propylâ€2â€oxazoline) based copolymers. Journal of Polymer Science Part A, 2016, 54, 1573-1582.	2.3	38
200	A Synthetic, Transiently Thermoresponsive Homopolymer with UCST Behaviour within a Physiologically Relevant Window. Angewandte Chemie - International Edition, 2019, 58, 7866-7872.	13.8	38
201	Protocol for Automated Kinetic Investigation/Optimization of the RAFT Polymerization of Various Monomers. QSAR and Combinatorial Science, 2008, 27, 977-983.	1.4	37
202	Amphiphilic gradient copolymers containing fluorinated 2â€phenylâ€2â€oxazolines: Microwaveâ€assisted oneâ€pot synthesis and selfâ€assembly in water. Journal of Polymer Science Part A, 2008, 46, 5859-5868.	2.3	37
203	Copolymers of 2-hydroxyethylacrylate and 2-methoxyethyl acrylate by nitroxide mediated polymerization: kinetics, SEC-ESI-MS analysis and thermoresponsive properties. Polymer Chemistry, 2012, 3, 335-342.	3.9	37
204	Poly(2-isopropenyl-2-oxazoline) Hydrogels for Biomedical Applications. Chemistry of Materials, 2018, 30, 7938-7949.	6.7	37
205	A Mixed Ruthenium Polypyridyl Complex Containing a PEG-Bipyridine Macroligand. Macromolecular Rapid Communications, 2004, 25, 793-798.	3.9	36
206	Microwave Accelerated Polymerization of 2-Phenyl-2-oxazoline: Microwave or Temperature Effects?. Macromolecular Rapid Communications, 2005, 26, 1773-1778.	3.9	36
207	Direct nitroxide mediated (co)polymerization of 4-vinylphenylboronic acid as route towards sugar sensors. Polymer Chemistry, 2012, 3, 1726-1729.	3.9	36
208	A Sugar Decorated Macromolecular Bottle Brush by Carbohydrate-Initiated Cationic Ring-Opening Polymerization. Macromolecules, 2012, 45, 46-55.	4.8	36
209	Transiently responsive protein–polymer conjugates via a â€~grafting-from' RAFT approach for intracellular co-delivery of proteins and immune-modulators. Chemical Communications, 2015, 51, 13972-13975.	4.1	36
210	Partially Hydrolyzed Poly(<i>n</i> -propyl-2-oxazoline): Synthesis, Aqueous Solution Properties, and Preparation of Gene Delivery Systems. Biomacromolecules, 2016, 17, 3580-3590.	5.4	36
211	Controlled-release of opioids for improved pain management. Materials Today, 2016, 19, 491-502.	14.2	36
212	Poly(2-oxazoline) block copolymer nanoparticles for curcumin loading and delivery to cancer cells. European Polymer Journal, 2017, 93, 682-694.	5.4	36
213	Poly(2-isopropenyl-2-oxazoline) as a versatile platform towards thermoresponsive copolymers. Polymer Chemistry, 2018, 9, 3473-3478.	3.9	36
214	Structure-property relationships for polycarboxylate ether superplasticizers by means of RAFT polymerization. Journal of Colloid and Interface Science, 2019, 553, 788-797.	9.4	36
215	Straightforward Route to Superhydrophilic Poly(2-oxazoline)s via Acylation of Well-Defined Polyethylenimine. Biomacromolecules, 2019, 20, 222-230.	5.4	36
216	High compression strength single network hydrogels with pillar[5]arene junction points. Materials Horizons, 2020, 7, 566-573.	12.2	36

#	Article	IF	CITATIONS
217	High Temperature Initiator-Free RAFT Polymerization of Methyl Methacrylate in a Microwave Reactor. Australian Journal of Chemistry, 2009, 62, 254.	0.9	35
218	Orthogonal self-assembly of stimuli-responsive supramolecular polymers using one-step prepared heterotelechelic building blocks. Polymer Chemistry, 2013, 4, 113-123.	3.9	35
219	Thermoresponsive hydrogels formed by poly(2-oxazoline) triblock copolymers. Polymer Chemistry, 2019, 10, 3480-3487.	3.9	35
220	Efficient Cationic Ring-Opening Polymerization of Diverse Cyclic Imino Ethers: Unexpected Copolymerization Behavior. Macromolecules, 2011, 44, 4320-4325.	4.8	34
221	Recognitionâ€Mediated Hydrogel Swelling Controlled by Interaction with a Negative Thermoresponsive LCST Polymer. Angewandte Chemie - International Edition, 2016, 55, 13974-13978.	13.8	34
222	Unexpected Switching of the Photogelation Chemistry When Cross-Linking Poly(2-oxazoline) Copolymers. Macromolecules, 2016, 49, 4774-4783.	4.8	34
223	Triple responsive block copolymers combining pHâ€responsive, thermoresponsive, and glucoseâ€responsive behaviors. Journal of Polymer Science Part A, 2017, 55, 2309-2317.	2.3	34
224	Unexpected Reactivity Switch in the Statistical Copolymerization of 2-Oxazolines and 2-Oxazines Enabling the One-Step Synthesis of Amphiphilic Gradient Copolymers. Journal of the American Chemical Society, 2019, 141, 9617-9622.	13.7	34
225	Poly(2â€oxazoline)s based on fatty acids. European Journal of Lipid Science and Technology, 2011, 113, 59-71.	1.5	33
226	Poly(2â€ethylâ€2â€oxazoline) as Matrix Excipient for Drug Formulation by Hot Melt Extrusion and Injection Molding. Macromolecular Rapid Communications, 2012, 33, 1701-1707.	3.9	33
227	Model-Based Visualization and Understanding of Monomer Sequence Formation in Gradient Copoly(2-oxazoline)s On the basis of 2-Methyl-2-oxazoline and 2-Phenyl-2-oxazoline. Macromolecules, 2015, 48, 7765-7773.	4.8	33
228	Hierarchically Structured Porous Poly(2â€oxazoline) Hydrogels. Macromolecular Rapid Communications, 2016, 37, 93-99.	3.9	33
229	Conformational properties of biocompatible poly(2-ethyl-2-oxazoline)s in phosphate buffered saline. Polymer Chemistry, 2018, 9, 2232-2237.	3.9	33
230	Poly(2-oxazoline)-protein conjugates. European Polymer Journal, 2019, 120, 109246.	5.4	33
231	Microwave-Assisted Synthesis of 3,6-Di(pyridin-2-yl)pyridazines:Â Unexpected Ketone and Aldehyde Cycloadditions. Journal of Organic Chemistry, 2006, 71, 4903-4909.	3.2	32
232	Synthesis and microwave assisted polymerization of fluorinated 2-phenyl-2-oxazolines: the fastest 2-oxazoline monomer to date. Chemical Communications, 2008, , 1458.	4.1	32
233	Rational design of a hexapeptide hydrogelator for controlled-release drug delivery. Journal of Materials Chemistry B, 2015, 3, 759-765.	5.8	32

 $_{234}$ UV-tunable upper critical solution temperature behavior of azobenzene containing poly(methyl) Tj ETQq0 0 0 rgBT $_{5.4}^{O}$ Verlock $_{32}^{10}$ Tf 50 62

#	Article	IF	CITATIONS
235	The Label Matters: μPET Imaging of the Biodistribution of Low Molar Mass 89Zr and 18F-Labeled Poly(2-ethyl-2-oxazoline). Biomacromolecules, 2017, 18, 96-102.	5.4	32
236	Effect of crosslinking stage on photocrosslinking of benzophenone functionalized poly(2-ethyl-2-oxazoline) nanofibers obtained by aqueous electrospinning. European Polymer Journal, 2019, 112, 24-30.	5.4	32
237	Star-shaped Poly(2-oxazoline)s by Dendrimer Endcapping. Australian Journal of Chemistry, 2011, 64, 1026.	0.9	31
238	Selfâ€Assembly of Poly(2â€alkylâ€2â€oxazoline)s by Crystallization in Ethanol–Water Mixtures Below the Upper Critical Solution Temperature. Macromolecular Rapid Communications, 2011, 32, 1753-1758.	3.9	31
239	Self-assembly of chiral block and gradient copolymers. Soft Matter, 2012, 8, 165-172.	2.7	31
240	Thermal Properties of Methyl Ester-Containing Poly(2-oxazoline)s. Polymers, 2015, 7, 1998-2008.	4.5	31
241	Synthesis of novel boronic acid-decorated poly(2-oxazoline)s showing triple-stimuli responsive behavior. Polymer Chemistry, 2016, 7, 6725-6734.	3.9	31
242	Poly(2-ethyl-2-oxazoline)-block-polycarbonate block copolymers: from improved end-group control in poly(2-oxazoline)s to chain extension with aliphatic polycarbonate through a fully metal-free ring-opening polymerisation process. Polymer Chemistry, 2016, 7, 1559-1568.	3.9	31
243	Thermoresponsive laterally-branched polythiophene phenylene derivative as water-soluble temperature sensor. Polymer Chemistry, 2017, 8, 4352-4358.	3.9	31
244	Full and Partial Amidation of Poly(methyl acrylate) as Basis for Functional Polyacrylamide (Co)Polymers. Macromolecules, 2019, 52, 5102-5109.	4.8	31
245	Synthesis and Micellization of Coilâ`'Rodâ`'Coil Ruthenium(II) Terpyridine Assemblies. Macromolecules, 2008, 41, 8823-8831.	4.8	30
246	One-pot synthesis of cyclopentadienyl endcapped poly(2-ethyl-2-oxazoline) and subsequent ambient temperature Diels–Alder conjugations. Chemical Communications, 2011, 47, 10620.	4.1	30
247	Characterization of poly(2-oxazoline) homo- and copolymers by liquid chromatography at critical conditions. Journal of Chromatography A, 2011, 1218, 8370-8378.	3.7	30
248	Mixed α/β-Peptides as a Class of Short Amphipathic Peptide Hydrogelators with Enhanced Proteolytic Stability. Biomacromolecules, 2016, 17, 437-445.	5.4	30
249	Controlled Synthesis of Fluorinated Copolymers via Cobalt-Mediated Radical Copolymerization of Perfluorohexylethylene and Vinyl Acetate. Macromolecules, 2017, 50, 3750-3760.	4.8	30
250	Supramolecular thermoplastics and thermoplastic elastomer materials with self-healing ability based on oligomeric charged triblock copolymers. NPG Asia Materials, 2017, 9, e385-e385.	7.9	30
251	High-throughput synthesis equipment applied to polymer research. Review of Scientific Instruments, 2005, 76, 062202.	1.3	29
252	Scaling-up the Synthesis of 1-Butyl-3-methylimidazolium Chloride under Microwave Irradiation. Australian Journal of Chemistry, 2008, 61, 197.	0.9	29

#	Article	IF	CITATIONS
253	Hydrogen bonded polymeric multilayer films assembled below and above the cloud point temperature. Chemical Communications, 2013, 49, 9663.	4.1	29
254	Solvent-free mechanochemical synthesis of a bicyclononyne tosylate: a fast route towards bioorthogonal clickable poly(2-oxazoline)s. Polymer Chemistry, 2015, 6, 8354-8359.	3.9	29
255	Waterborne Electrospinning of Poly(<i>N</i> -isopropylacrylamide) by Control of Environmental Parameters. ACS Applied Materials & Interfaces, 2017, 9, 24100-24110.	8.0	29
256	Amidation of methyl ester side chain bearing poly(2-oxazoline)s with tyramine: a quest for a selective and quantitative approach. Polymer Chemistry, 2019, 10, 954-962.	3.9	29
257	Terpyridine - Ruthenium Complexes as Building Blocks for New Metallo-Supramolecular Architectures. Australian Journal of Chemistry, 2004, 57, 419.	0.9	28
258	Characterization and Magnetic Heating of Commercial Superparamagnetic Iron Oxide Nanoparticles. Journal of Physical Chemistry C, 2009, 113, 14638-14643.	3.1	28
259	Self-organization of rod–coil tri- and tetra-arm star metallo-supramolecular block copolymers in selective solvents. Soft Matter, 2009, 5, 2954.	2.7	28
260	Secondary structure formation of main-chain chiral poly(2-oxazoline)s in solution. Soft Matter, 2010, 6, 994.	2.7	28
261	Thermal Properties of Oligo(2â€ethylâ€2â€oxazoline) Containing Comb and Graft Copolymers and their Aqueous Solutions. Macromolecular Symposia, 2011, 308, 17-24.	0.7	28
262	pH degradable dendron-functionalized poly(2-ethyl-2-oxazoline) prepared by a cascade "double-click― reaction. Polymer Chemistry, 2013, 4, 3236.	3.9	28
263	Solution Polymeric Optical Temperature Sensors with Longâ€Term Memory Function Powered by Supramolecular Chemistry. Chemistry - A European Journal, 2015, 21, 1302-1311.	3.3	28
264	Responsive Boronic Acid-Decorated (Co)polymers: From Glucose Sensors to Autonomous Drug Delivery. Sensors, 2016, 16, 1736.	3.8	28
265	Photoresponsive Polymers on the Move. CheM, 2017, 3, 533-536.	11.7	28
266	Synthesis of defined high molar mass poly(2-methyl-2-oxazoline). Polymer Chemistry, 2019, 10, 1286-1290.	3.9	28
267	Nanofibers with a tunable wettability by electrospinning and physical crosslinking of poly(2-n-propyl-2-oxazoline). Materials and Design, 2020, 192, 108747.	7.0	28
268	Elastic moduli for a diblock copoly(2-oxazoline) library obtained by high-throughput screening. Journal of Materials Chemistry, 2007, 17, 2713.	6.7	27
269	Micellar dye shuttle between water and an ionic liquid. Soft Matter, 2011, 7, 3827.	2.7	27
270	Water uptake of poly(2-N-alkyl-2-oxazoline)s: influence of crystallinity and hydrogen-bonding on the mechanical properties. Journal of Materials Chemistry, 2011, 21, 17331.	6.7	27

#	Article	IF	CITATIONS
271	Enhanced Selectivity for the Hydrolysis of Block Copoly(2â€oxazoline)s in Ethanol–Water Resulting in Linear Poly(ethylene imine) Copolymers. Macromolecular Rapid Communications, 2012, 33, 827-832.	3.9	27
272	Poly(2-oxazoline) hydrogels as next generation three-dimensional cell supports. Cell Adhesion and Migration, 2014, 8, 88-93.	2.7	27
273	Injectable peptide hydrogels for controlled-release of opioids. MedChemComm, 2016, 7, 542-549.	3.4	27
274	Poly(2-methyl-2-oxazoline) conjugates with doxorubicin: From synthesis of high drug loading water-soluble constructs to in vitro anti-cancer properties. Journal of Controlled Release, 2020, 326, 53-62.	9.9	27
275	Design of new amphiphilic triblock copoly(2â€oxazoline)s containing a fluorinated segment. Journal of Polymer Science Part A, 2010, 48, 5100-5108.	2.3	26
276	Amphiphilic oligoether-based ionic liquids as functional materials for thermoresponsive ion gels with tunable properties via aqueous gelation. Soft Matter, 2012, 8, 1025-1032.	2.7	26
277	Cationic Ring-Opening Polymerization of 2-Propyl-2-oxazolines: Understanding Structural Effects on Polymerization Behavior Based on Molecular Modeling. ACS Macro Letters, 2013, 2, 651-654.	4.8	26
278	Thermoresponsive polymeric temperature sensors with broad sensing regimes. Polymer Chemistry, 2015, 6, 2396-2400.	3.9	26
279	Effects of a dielectric barrier discharge (DBD) treatment on chitosan/polyethylene oxide nanofibers and their cellular interactions. Carbohydrate Polymers, 2018, 201, 402-415.	10.2	26
280	Morphologies of Spin-Coated Films of a Library of Diblock Copoly(2-oxazoline)s and Their Correlation to the Corresponding Surface Energies. Macromolecular Rapid Communications, 2006, 27, 405-411.	3.9	25
281	Cu(0)-mediated polymerization of hydrophobic acrylates using high-throughput experimentation. Polymer Chemistry, 2014, 5, 4268-4276.	3.9	25
282	Schizophrenic thermoresponsive block copolymer micelles based on LCST and UCST behavior in ethanol–water mixtures. European Polymer Journal, 2015, 69, 460-471.	5.4	25
283	The effect of ionizing radiation on biocompatible polymers: From sterilization to radiolysis and hydrogel formation. Polymer Degradation and Stability, 2017, 137, 1-10.	5.8	25
284	<i>In Vivo</i> Imaging of the Stability and Sustained Cargo Release of an Injectable Amphipathic Peptide-Based Hydrogel. Biomacromolecules, 2017, 18, 994-1001.	5.4	25
285	Hydrogen bonded capsules by layer-by-layer assembly of tannic acid and poly(2- <i>n</i> -propyl-2-oxazoline) for encapsulation and release of macromolecules. Journal of Materials Chemistry B, 2017, 5, 8967-8974.	5.8	25
286	Plasma dye coating as straightforward and widely applicable procedure for dye immobilization on polymeric materials. Nature Communications, 2018, 9, 1123.	12.8	25
287	Poly(2-amino-2-oxazoline)s: a new class of thermoresponsive polymers. Polymer Chemistry, 2019, 10, 4683-4689.	3.9	25
288	Comparative study of the potential of poly(2-ethyl-2-oxazoline) as carrier in the formulation of amorphous solid dispersions of poorly soluble drugs. European Journal of Pharmaceutics and Biopharmaceutics, 2019, 144, 79-90.	4.3	25

#	Article	IF	CITATIONS
289	Self-Healing and Moldable Poly(2-isopropenyl-2-oxazoline) Supramolecular Hydrogels Based on a Transient Metal Coordination Network. Macromolecules, 2020, 53, 6566-6575.	4.8	25
290	Selfâ€Healing Metalloâ€&upramolecular Hydrogel Based on Specific Ni ²⁺ Coordination Interactions of Poly(ethylene glycol) with Bistriazole Pyridine Ligands in the Main Chain. Macromolecular Rapid Communications, 2020, 41, e1900457.	3.9	25
291	Strongly Phase-Segregating Block Copolymers with Sub-20 nm Features. ACS Macro Letters, 2013, 2, 677-682.	4.8	25
292	Fabrication of Organicâ^'Inorganic Semiconductor Composites Utilizing the Different Aggregation States of a Single Amphiphilic Dendrimer. Langmuir, 2002, 18, 2571-2576.	3.5	24
293	Thermoresponsive polyacrylates obtained via a cascade of enzymatic transacylation and FRP or NMP. Polymer Chemistry, 2010, 1, 878.	3.9	24
294	Repetitive on-demand drug release by magnetic heating of iron oxide containing polymeric implants. Soft Matter, 2012, 8, 1623-1627.	2.7	24
295	Metallo‧upramolecular Materials Based on Amineâ€Grafting Onto Polypentafluorostyrene. Macromolecular Rapid Communications, 2012, 33, 556-561.	3.9	24
296	RAFT Polymerization of 4â€Vinylphenylboronic Acid as the Basis for Micellar Sugar Sensors. Macromolecular Rapid Communications, 2014, 35, 214-220.	3.9	24
297	Thermoresponsive polymer coated gold nanoparticles: from MADIX/RAFT copolymerization of N-vinylpyrrolidone and N-vinylcaprolactam to salt and temperature induced nanoparticle aggregation. RSC Advances, 2015, 5, 42388-42398.	3.6	24
298	Revisiting the crystallization of poly(2-alkyl-2-oxazoline)s. Journal of Polymer Science, Part B: Polymer Physics, 2016, 54, 721-729.	2.1	24
299	Atmospheric Pressure Plasma Jet Treatment of Poly-ε-caprolactone Polymer Solutions To Improve Electrospinning. ACS Applied Materials & Interfaces, 2017, 9, 33080-33090.	8.0	24
300	Mucus-penetrating nanoparticles based on chitosan grafted with various non-ionic polymers: Synthesis, structural characterisation and diffusion studies. Journal of Colloid and Interface Science, 2022, 626, 251-264.	9.4	24
301	Reversible Addition-Fragmentation Chain Transfer Polymerization on different Synthesizer Platforms. QSAR and Combinatorial Science, 2005, 24, 863-867.	1.4	23
302	Microwave-assisted synthesis and micellization behavior of soy-based copoly(2-oxazoline)s. Colloid and Polymer Science, 2006, 284, 1313-1318.	2.1	23
303	Simplifying the Free-Radical Polymerization of Styrene: Microwave-Assisted High-Temperature Auto Polymerizations. Australian Journal of Chemistry, 2009, 62, 58.	0.9	23
304	Ordered Chiral Structures in the Crystals of Main-Chain Chiral Poly(2-oxazoline)s. Macromolecules, 2010, 43, 4654-4659.	4.8	23
305	Microwave-Assisted Cationic Ring-Opening Polymerization of 2-Oxazolines. Advances in Polymer Science, 2015, 274, 183-208.	0.8	23
306	Injectable peptide-based hydrogel formulations for the extended inÂvivo release of opioids. Materials Today Chemistry, 2017, 3, 49-59.	3.5	23

#	Article	IF	CITATIONS
307	Synthesis, characterization, and crossâ€linking of a library of statistical copolymers based on 2â€â€œsoy alkylâ€â€2â€oxazoline and 2â€ethylâ€2â€oxazoline. Journal of Polymer Science Part A, 2007, 45, 5371-5379.	2.3	22
308	Redox-controlled upper critical solution temperature behaviour of a nitroxide containing polymer in alcohol–water mixtures. Polymer Chemistry, 2016, 7, 1088-1095.	3.9	22
309	A supramolecular miktoarm star polymer based on porphyrin metal complexation in water. Chemical Communications, 2017, 53, 8423-8426.	4.1	22
310	Aqueous electrospinning of poly(2-ethyl-2-oxazoline): Mapping the parameter space. European Polymer Journal, 2017, 88, 724-732.	5.4	22
311	In Situ Cross-Linked Nanofibers by Aqueous Electrospinning of Selenol-Functionalized Poly(2-oxazoline)s. Macromolecules, 2018, 51, 6149-6156.	4.8	22
312	Tailor Made Sideâ€Chain Functionalized Macromolecules by Combination of Controlled Radical Polymerization and Click Chemistry. Macromolecular Symposia, 2009, 275–276, 73-81.	0.7	21
313	New terpyridine macroligands as potential synthons for supramolecular assemblies. European Polymer Journal, 2010, 46, 260-269.	5.4	21
314	Tuning temperature responsive poly(2-alkyl-2-oxazoline)s by supramolecular host–guest interactions. Organic and Biomolecular Chemistry, 2015, 13, 3048-3057.	2.8	21
315	Preparation of nonâ€spherical particles from amphiphilic block copolymers. Journal of Polymer Science Part A, 2016, 54, 750-757.	2.3	21
316	Complexation of thermoresponsive dialkoxynaphthalene end-functionalized poly(oligoethylene) Tj ETQq0 0 0 rgB	T /Overloo 3.9	ck 10 Tf 50 3
317	Self-healing hydrophobic POSS-functionalized fluorinated copolymers <i>via</i> RAFT polymerization and dynamic Diels–Alder reaction. Polymer Chemistry, 2021, 12, 876-884.	3.9	21
318	Judging Enzyme-Responsive Micelles by Their Covers: Direct Comparison of Dendritic Amphiphiles with Different Hydrophilic Blocks. Biomacromolecules, 2021, 22, 1197-1210.	5.4	21
319	Synthesis and properties of gradient copolymers based on 2â€phenylâ€2â€oxazoline and 2â€nonylâ€2â€oxazolin Journal of Polymer Science Part A, 2009, 47, 6433-6440.	ne 2.3	20
320	Kinetic study of the polymerization of aromatic polyurethane prepolymers by highâ€ŧhroughput experimentation. Journal of Polymer Science Part A, 2010, 48, 570-580.	2.3	20
321	Linear poly(alkyl ethylene imine) with varying side chain length: synthesis and physical properties. Polymer Chemistry, 2010, 1, 747.	3.9	20
322	Upper critical solution temperature switchable micelles based on polystyreneâ€∢i>blockâ€poly(methyl) Tj ETC	Qq0,0 0 rg	gBT /Overlock
323	Sideâ€Chain Modification and "Grafting Onto―via Olefin Crossâ€Metathesis. Macromolecular Rapid Communications, 2012, 33, 2023-2028.	3.9	20

A systematic investigation of the effect of side chain branching on the glass transition temperature and mechanical properties of aliphatic (co-)poly(2-oxazoline)s. Polymer, 2013, 54, 2036-2042.

#	Article	IF	CITATIONS
325	Transiently Responsive Block Copolymer Micelles Based on <i>N</i> -(2-Hydroxypropyl)methacrylamide Engineered with Hydrolyzable Ethylcarbonate Side Chains. Biomacromolecules, 2016, 17, 119-127.	5.4	20
326	Novel triphilic block copolymers based on poly(2-methyl-2-oxazoline)–block–poly(2-octyl-2-oxazoline) with different terminal perfluoroalkyl fragments: Synthesis and self-assembly behaviour. European Polymer Journal, 2017, 88, 645-655.	5.4	20
327	Biodegradable Amphipathic Peptide Hydrogels as Extended-Release System for Opioid Peptides. Journal of Medicinal Chemistry, 2018, 61, 9784-9789.	6.4	20
328	On-Demand Dissoluble Diselenide-Containing Hydrogel. Biomacromolecules, 2020, 21, 3308-3317.	5.4	20
329	Fluorinated Water-Soluble Poly(2-oxazoline)s as Highly Sensitive ¹⁹ F MRI Contrast Agents. Macromolecules, 2020, 53, 6387-6395.	4.8	20
330	Ethyl acetate as solvent for the synthesis of poly(2-ethyl-2-oxazoline). Green Chemistry, 2020, 22, 1747-1753.	9.0	20
331	Unexpected radical polymerization behavior of oligo(2-ethyl-2-oxazoline) macromonomers. Polymer Chemistry, 2012, 3, 2976.	3.9	19
332	Reversible Calcium(II)â€ion Binding through an Apparent p <i>K</i> _a Shift of Thermosensitive Blockâ€Copolymer Micelles. Angewandte Chemie - International Edition, 2015, 54, 14085-14089.	13.8	19
333	Poly(2-cycloalkyl-2-oxazoline)s: high melting temperature polymers solely based on Debye and Keesom van der Waals interactions. Polymer Chemistry, 2016, 7, 1309-1322.	3.9	19
334	Maleimide end-functionalized poly(2-oxazoline)s by the functional initiator route: synthesis and (bio)conjugation. RSC Advances, 2018, 8, 9471-9479.	3.6	19
335	Molecularly Imprinted Poly(2-oxazoline) Based on Cross-Linking by Direct Amidation of Methyl Ester Side Chains. Macromolecules, 2018, 51, 6468-6475.	4.8	19
336	Water-Stable Plasma-Polymerized <i>N</i> , <i>N</i> -Dimethylacrylamide Coatings to Control Cellular Adhesion. ACS Applied Materials & Interfaces, 2020, 12, 2116-2128.	8.0	19
337	Stimuli-Responsive Covalent Adaptable Hydrogels Based on Homolytic Bond Dissociation and Chain Transfer Reactions. Chemistry of Materials, 2022, 34, 468-498.	6.7	19
338	The Introduction of High-Throughput Experimentation Methods for Suzuki–Miyaura Coupling Reactions in University Education. Journal of Chemical Education, 2005, 82, 1693.	2.3	18
339	Hydroxy functional acrylate and methacrylate monomers prepared via lipase—catalyzed transacylation reactions. Journal of Molecular Catalysis B: Enzymatic, 2010, 62, 80-89.	1.8	18
340	α-TOS-based RAFT block copolymers and their NPs for the treatment of cancer. Polymer Chemistry, 2016, 7, 838-850.	3.9	18
341	The Elusive Seven-Membered Cyclic Imino Ether Tetrahydrooxazepine. Journal of the American Chemical Society, 2018, 140, 17404-17408.	13.7	18
342	Fabrication of PEOT/PBT Nanofibers by Atmospheric Pressure Plasma Jet Treatment of Electrospinning Solutions for Tissue Engineering. Macromolecular Bioscience, 2018, 18, e1800309.	4.1	18

#	Article	IF	CITATIONS
343	Fluorophilic–Lipophilic–Hydrophilic Poly(2-oxazoline) Block Copolymers as MRI Contrast Agents: From Synthesis to Self-Assembly. Macromolecules, 2018, 51, 6047-6056.	4.8	18
344	Photocontrol in Complex Polymeric Materials: Fact or Illusion?. Angewandte Chemie - International Edition, 2018, 57, 7945-7947.	13.8	18
345	Influence of side-chain length on long-term release kinetics from poly(2-oxazoline)-drug conjugate networks. European Polymer Journal, 2019, 120, 109217.	5.4	18
346	Temperature-Responsive Polymers: Properties, Synthesis, and Applications. , 2019, , 13-44.		18
347	Drug–polymer conjugates with dynamic cloud point temperatures based on poly(2-oxazoline) copolymers. Polymer Chemistry, 2020, 11, 5191-5199.	3.9	18
348	Porous Poly(2-oxazoline)-Based Polymers for Removal and Quantification of Phenolic Compounds. Chemistry of Materials, 2020, 32, 6425-6436.	6.7	18
349	Reduction-Responsive Molecularly Imprinted Poly(2-isopropenyl-2-oxazoline) for Controlled Release of Anticancer Agents. Pharmaceutics, 2020, 12, 506.	4.5	18
350	Synthesis and MALDI-TOF-MS of PS-PMA and PMA-PS block copolymers. European Polymer Journal, 2010, 46, 1932-1939.	5.4	17
351	Free radical and nitroxide mediated polymerization of hydroxy–functional acrylates prepared via lipase–catalyzed transacylation reactions. Journal of Polymer Science Part A, 2010, 48, 2610-2621.	2.3	17
352	Multiple micellar morphologies from tri―and tetrablock copoly(2â€oxazoline)s in binary water–ethanol mixtures. Journal of Polymer Science Part A, 2010, 48, 3095-3102.	2.3	17
353	Main-chain chiral copoly(2-oxazoline)s. Polymer Chemistry, 2011, 2, 203-208.	3.9	17
354	Saltâ€Driven Deposition of Thermoresponsive Polymerâ€Coated Metal Nanoparticles on Solid Substrates. Angewandte Chemie - International Edition, 2016, 55, 7086-7090.	13.8	17
355	Oneâ€Pot Automated Synthesis of Quasi Triblock Copolymers for Selfâ€Healing Physically Crosslinked Hydrogels. Macromolecular Rapid Communications, 2016, 37, 1682-1688.	3.9	17
356	Influence of the Aliphatic Side Chain on the Near Atmospheric Pressure Plasma Polymerization of 2-Alkyl-2-oxazolines for Biomedical Applications. ACS Applied Materials & Interfaces, 2019, 11, 31356-31366.	8.0	17
357	Macropropagation Rate Coefficients and Branching Levels in Cationic Ring-Opening Polymerization of 2-Ethyl-2-oxazoline through Prediction of Size Exclusion Chromatography Data. Macromolecules, 2019, 52, 4067-4078.	4.8	17
358	Understanding the effect of monomer structure of oligoethylene glycol acrylate copolymers on their thermoresponsive behavior for the development of polymeric sensors. Polymer Chemistry, 2019, 10, 5778-5789.	3.9	17
359	Acyl guanidine functional poly(2â€oxazoline)s as reactive intermediates and stimuliâ€responsive materials. Journal of Polymer Science Part A, 2019, 57, 2616-2624	2.3	17
360	Reversible covalent locking of a supramolecular hydrogel <i>via</i> UV-controlled anthracene dimerization. Polymer Chemistry, 2021, 12, 307-315.	3.9	17

#	Article	IF	CITATIONS
361	Physically Cross-Linked Polybutadiene by Quadruple Hydrogen Bonding through Side-Chain Incorporation of Ureidopyrimidinone with Branched Alkyl Side Chains. Macromolecules, 2022, 55, 928-941.	4.8	17
362	Evaporation induced micellization of poly(2-oxazoline) multiblock copolymers on surfaces. Soft Matter, 2007, 3, 79-82.	2.7	16
363	ESIâ€MS & MS/MS Analysis of Poly(2â€oxazoline)s with Different Side Groups. Macromolecular Chemistry and Physics, 2010, 211, 2312-2322.	2.2	16
364	Unexpected metal-mediated oxidation of hydroxymethyl groups to coordinated carboxylate groups by bis-cyclometalated iridium(iii) centers. New Journal of Chemistry, 2010, 34, 2622.	2.8	16
365	Influence of Distribution on the Heating of Superparamagnetic Iron Oxide Nanoparticles in Poly(methyl methacrylate) in an Alternating Magnetic Field. Journal of Physical Chemistry C, 2010, 114, 8144-8149.	3.1	16
366	Tailoring Cellular Uptake of Gold Nanoparticles Via the Hydrophilicâ€ŧoâ€Hydrophobic Ratio of their (Co)polymer Coating. Advanced Functional Materials, 2015, 25, 3433-3439.	14.9	16
367	Sweet Polymers: Poly(2-ethyl-2-oxazoline) Glycopolymers by Reductive Amination. Biomacromolecules, 2016, 17, 4027-4036.	5.4	16
368	RAFT/MADIX polymerization of N-vinylcaprolactam in water–ethanol solvent mixtures. Polymer Chemistry, 2017, 8, 2433-2437.	3.9	16
369	Microwave-Assisted Organic and Polymer Chemistry. Australian Journal of Chemistry, 2009, 62, 181.	0.9	15
370	Water Uptake of Poly(2- <i>N</i> -Alkyl-2-Oxazoline)s: Temperature-Dependent Fourier Transform Infrared (FT-IR) Spectroscopy and Two-Dimensional Correlation Analysis (2DCOS). Applied Spectroscopy, 2012, 66, 1145-1155.	2.2	15
371	One-Pot Preparation of Inert Well-Defined Polymers by RAFT Polymerization and In Situ End Group Transformation. Macromolecular Rapid Communications, 2015, 36, 1177-1183.	3.9	15
372	Fluorinated 2-Alkyl-2-oxazolines of High Reactivity: Spacer-Length-Induced Acceleration for Cationic Ring-Opening Polymerization As a Basis for Triphilic Block Copolymer Synthesis. ACS Macro Letters, 2018, 7, 7-10.	4.8	15
373	Evaluation of cross-linking and degradation processes occurring at polymer surfaces upon plasma activation via size-exclusion chromatography. Polymer Degradation and Stability, 2021, 187, 109543.	5.8	15
374	Influence of Chain Length of Gradient and Block Copoly(2â€oxazoline)s on Selfâ€Assembly and Drug Encapsulation. Small, 2022, 18, e2106251.	10.0	15
375	Poly(2â€oxazoline)s: a comprehensive overview of polymer structures and their physical properties—an update. Polymer International, 2022, 71, 935-949.	3.1	15
376	A Green and Straightforward Synthesis of 4′-Substituted Terpyridines. Synthesis, 2006, 2006, 2873-2878.	2.3	14
377	Structural modifications of polymethacrylates: Impact on thermal behavior and release characteristics of glassy solid solutions. European Journal of Pharmaceutics and Biopharmaceutics, 2013, 85, 1206-1214.	4.3	14
378	Mechanochemical Preparation of Stable Subâ€100â€nm γ yclodextrin:Buckminsterfullerene (C60) Nanoparticles by Electrostatic or Steric Stabilization. Chemistry - A European Journal, 2018, 24, 2758-2766.	3.3	14

#	Article	IF	CITATIONS
379	Metal Ion Selective Selfâ€Assembly of a Ligand Functionalized Polymer into [1+1] Macrocyclic and Supramolecular Polymer Structures via Metal–Ligand Coordination. Macromolecular Rapid Communications, 2020, 41, e1900305.	3.9	14
380	Terpyridine-based silica supports prepared by ring-opening metathesis polymerization for the selective extraction of noble metals. Journal of Chromatography A, 2003, 1015, 65-71.	3.7	13
381	Synthesis, complete characterization, and enantioselective electrokinetic separation of functionalized ruthenium complex enantiomers. Chirality, 2004, 16, 363-368.	2.6	13
382	Micellization of Poly(2â€oxazoline)â€Based Quasiâ€Diblock Copolymers on Surfaces. Macromolecular Chemistry and Physics, 2007, 208, 2026-2031.	2.2	13
383	Correlating the mechanical and surface properties with the composition of triblock copoly(2-oxazoline)s. Journal of Materials Chemistry, 2009, 19, 222-229.	6.7	13
384	Poly(2â€oxazoline)s and Related Pseudoâ€Polypeptides. Macromolecular Rapid Communications, 2012, 33, 1599-1599.	3.9	13
385	Hydrogen-Bonded Multilayer Thin Films and Capsules Based on Poly(2- <i>n</i> -propyl-2-oxazoline) and Tannic Acid: Investigation on Intermolecular Forces, Stability, and Permeability. Langmuir, 2019, 35, 14712-14724.	3.5	13
386	Crosslinking of electrospun and bioextruded partially hydrolyzed poly(2-ethyl-2-oxazoline) using glutaraldehyde vapour. European Polymer Journal, 2019, 120, 109218.	5.4	13
387	New platinum(II) and palladium(II) complexes with substituted terpyridine ligands: synthesis and characterization, cytotoxicity and reactivity towards biomolecules. BioMetals, 2019, 32, 33-47.	4.1	13
388	Self-Assembly, Drug Encapsulation, and Cellular Uptake of Block and Gradient Copolymers of 2-Methyl-2-oxazine and 2- <i>n</i> -Propyl/butyl-2-oxazoline. Macromolecules, 2021, 54, 10667-10681.	4.8	13
389	Kinetic Investigations on Microwave-Assisted Statistical Terpolymerizations of 2-Oxazoline Monomers. Australian Journal of Chemistry, 2007, 60, 656.	0.9	12
390	Mainâ€chain chiral poly(2â€oxazoline)s: Influence of alkyl sideâ€chain on secondary structure formation in solution. Journal of Polymer Science Part A, 2011, 49, 2790-2801.	2.3	12
391	Straightforward RAFT Procedure for the Synthesis of Heterotelechelic Poly(acrylamide)s. Macromolecular Rapid Communications, 2014, 35, 405-411.	3.9	12
392	Thermoresponsive Interplay of Water Insoluble Poly(2-alkyl-2-oxazoline)s Composition and Supramolecular Host–Guest Interactions. International Journal of Molecular Sciences, 2015, 16, 7428-7444.	4.1	12
393	Poly(2-oxazoline)s with pendant cubane groups. Polymer Chemistry, 2018, 9, 4840-4847.	3.9	12
394	Solvent-control over monomer distribution in the copolymerization of 2-oxazolines and the effect of a gradient structure on self-assembly. Polymer Chemistry, 2019, 10, 5116-5123.	3.9	12
395	Stoichiometric Control over Partial Transesterification of Polyacrylate Homopolymers as Platform for Functional Copolyacrylates. Macromolecular Rapid Communications, 2020, 41, e2000365.	3.9	12
396	Poly(2-ethyl-2-oxazoline) Conjugates with Salicylic Acid via Degradable Modular Ester Linkages. Biomacromolecules, 2020, 21, 3207-3215.	5.4	12

#	Article	IF	CITATIONS
397	POSS and fluorine containing nanostructured block copolymer; Synthesis via RAFT polymerization and its application as hydrophobic coating material. European Polymer Journal, 2020, 131, 109679.	5.4	12
398	Thermoresponsive properties of polyacrylamides in physiological solutions. Polymer Chemistry, 2021, 12, 5077-5084.	3.9	12
399	Atom Transfer Radical Polymerization of Methyl Methacrylate Utilizing an Automated Synthesizer. ACS Symposium Series, 2003, , 193-205.	0.5	11
400	Relaxation Processes of Superparamagnetic Iron Oxide Nanoparticles in Liquid and Incorporated in Poly(methyl methacrylate). Journal of Physical Chemistry C, 2008, 112, 15643-15646.	3.1	11
401	Solution prepolymerization as a new route for preparing aliphatic polyurethane prepolymers using highâ€throughput experimentation. Journal of Polymer Science Part A, 2009, 47, 3729-3739.	2.3	11
402	Tuning of Polymeric Nanoparticles by Coassembly of Thermoresponsive Polymers and a Double Hydrophilic Thermoresponsive Block Copolymer. Journal of Physical Chemistry B, 2016, 120, 4635-4643.	2.6	11
403	Structural characterization of nanoparticles formed by fluorinated poly(2-oxazoline)-based polyphiles. European Polymer Journal, 2018, 99, 518-527.	5.4	11
404	Rethinking the impact of the protonable amine density on cationic polymers for gene delivery: A comparative study of partially hydrolyzed poly(2-ethyl-2-oxazoline)s and linear poly(ethylene imine)s. European Journal of Pharmaceutics and Biopharmaceutics, 2018, 133, 112-121.	4.3	11
405	One‣tep Covalent Immobilization of β yclodextrin on sp 2 Carbon Surfaces for Selective Trace Amount Probing of Guests. Advanced Functional Materials, 2019, 29, 1901488.	14.9	11
406	Striking Effect of Polymer End-Group on C ₆₀ Nanoparticle Formation by High Shear Vibrational Milling with Alkyne-Functionalized Poly(2-oxazoline)s. ACS Macro Letters, 2019, 8, 172-176.	4.8	11
407	Förster resonance energy transfer in fluorophore labeled poly(2-ethyl-2-oxazoline)s. Journal of Materials Chemistry C, 2020, 8, 14125-14137.	5.5	11
408	Dual pH and thermoresponsive alternating polyampholytes in alcohol/water solvent mixtures. Polymer Chemistry, 2020, 11, 2205-2211.	3.9	11
409	Poly(2-allylamidopropyl-2-oxazoline)-Based Hydrogels: From Accelerated Gelation Kinetics to <i>In Vivo</i> Compatibility in a Murine Subdermal Implant Model. Biomacromolecules, 2021, 22, 1590-1599.	5.4	11
410	Thermoresponsive Polymer–Antibiotic Conjugates Based on Gradient Copolymers of 2-Oxazoline and 2-Oxazine. Biomacromolecules, 2021, 22, 5185-5194.	5.4	11
411	Supramolecular Starâ€Shaped Poly(ethylene glycol) Based on a [2 × 2] Gridâ€Like Metal Complex. Macromolecular Rapid Communications, 2010, 31, 840-845.	3.9	10
412	Multilayer films composed of a thermoresponsive cationic diblock copolymer and a photoresponsive dye. Polymer, 2013, 54, 4894-4901.	3.8	10
413	Recognitionâ€Mediated Hydrogel Swelling Controlled by Interaction with a Negative Thermoresponsive LCST Polymer. Angewandte Chemie, 2016, 128, 14180-14184.	2.0	10
414	End-group functionalization of poly(2-oxazoline)s using methyl bromoacetate as initiator followed by direct amidation. European Polymer Journal, 2019, 120, 109273.	5.4	10

#	Article	IF	CITATIONS
415	Wellâ€Defined Thermoresponsive Polymethacrylamide Copolymers with Ester Pendent Groups through Oneâ€Pot Statistical Postpolymerization Modification of Poly(2â€Isopropenylâ€2â€Oxazoline) with Multiple Carboxylic Acids. Journal of Polymer Science Part A, 2019, 57, 360-366.	2.3	10
416	Adamantane Functionalized Poly(2-oxazoline)s with Broadly Tunable LCST-Behavior by Molecular Recognition. Polymers, 2021, 13, 374.	4.5	10
417	Silanization of Plasma-Activated Hexamethyldisiloxane-Based Plasma Polymers for Substrate-Independent Deposition of Coatings with Controlled Surface Chemistry. ACS Applied Materials & Interfaces, 2022, 14, 4620-4636.	8.0	10
418	A unified kinetic Monte Carlo approach to evaluate (a)symmetric block and gradient copolymers with linear and branched chains illustrated for poly(2-oxazoline)s. Polymer Chemistry, 2022, 13, 1559-1575.	3.9	10
419	Saltâ€Driven Deposition of Thermoresponsive Polymerâ€Coated Metal Nanoparticles on Solid Substrates. Angewandte Chemie, 2016, 128, 7202-7206.	2.0	9
420	Oxidation of Monoterpenes Catalysed by a Waterâ€Soluble Mn ^{III} PEGâ€Porphyrin in a Biphasic Medium. ChemCatChem, 2018, 10, 2804-2809.	3.7	9
421	Poly(2-alkyl-2-oxazoline) electrode interlayers for improved n-type organic field effect transistor performance. Applied Physics Letters, 2019, 115, .	3.3	9
422	Immiscibility of Chemically Alike Amorphous Polymers: Phase Separation of Poly(2-ethyl-2-oxazoline) and Poly(2- <i>n</i> -propyl-2-oxazoline). Macromolecules, 2020, 53, 7590-7600.	4.8	9
423	Injectable biocompatible poly(2-oxazoline) hydrogels by strain promoted alkyne–azide cycloaddition. Biointerphases, 2021, 16, 011001.	1.6	9
424	Pyrazoloanthrone-functionalized fluorescent copolymer for the detection and rapid analysis of nitroaromatics. Materials Chemistry Frontiers, 2021, 5, 238-248.	5.9	9
425	<i>In Vitro</i> Assessment of the Hydrolytic Stability of Poly(2-isopropenyl-2-oxazoline). Biomacromolecules, 2021, 22, 5020-5032.	5.4	9
426	Molecularly Imprinted Polymers with Enhanced Selectivity Based on 4-(Aminomethyl)pyridine-Functionalized Poly(2-oxazoline)s for Detecting Hazardous Herbicide Contaminants. Chemistry of Materials, 2022, 34, 84-96.	6.7	9
427	Azido- and Ethynyl-Substituted 2,2′:6′,2′′-Terpyridines as Suitable Substrates for Click Reactions. Synthesis, 2009, 2009, 1506-1512.	2.3	8
428	Dual Responsive Regulation of Host–Guest Complexation in Aqueous Media to Control Partial Release of the Host. Chemistry - A European Journal, 2020, 26, 1292-1297.	3.3	8
429	Complex Temperature and Concentration Dependent Self-Assembly of Poly(2-oxazoline) Block Copolymers. Polymers, 2020, 12, 1495.	4.5	8
430	Degradation and excretion of poly(2-oxazoline) based hemostatic materials. Materialia, 2020, 12, 100763.	2.7	8
431	Supramolecular control over self-assembly and double thermoresponsive behavior of an amphiphilic block copolymer. European Polymer Journal, 2020, 125, 109537.	5.4	8
432	Accelerated Postâ€Polymerization Amidation of Polymers with Sideâ€Chain Ester Groups by Intramolecular Activation. Angewandte Chemie - International Edition, 2022, 61, .	13.8	8

#	Article	IF	CITATIONS
433	Surface micellization of poly(2-oxazoline)s based copolymers containing a crystallizable block. Journal of Colloid and Interface Science, 2009, 332, 91-95.	9.4	7
434	Molar mass, chemical-composition, and functionality-type distributions of poly(2-oxazoline)s revealed by a variety of separation techniques. Journal of Chromatography A, 2012, 1265, 123-132.	3.7	7
435	Enhanced Bioactivity of αâ€Tocopheryl Succinate Based Block Copolymer Nanoparticles by Reduced Hydrophobicity. Macromolecular Bioscience, 2016, 16, 1824-1837.	4.1	7
436	Repetitive on-demand drug release from polymeric matrices containing a macroscopic spherical iron core. Journal of Materials Science: Materials in Medicine, 2017, 28, 163.	3.6	7
437	Fundamental Studies on Poly(2-oxazoline) Side Chain Isomers Using Tandem Mass Spectrometry and Ion Mobility-Mass Spectrometry. Journal of the American Society for Mass Spectrometry, 2019, 30, 1220-1228.	2.8	7
438	Gas-Phase Dynamics of Collision Induced Unfolding, Collision Induced Dissociation, and Electron Transfer Dissociation-Activated Polymer Ions. Journal of the American Society for Mass Spectrometry, 2019, 30, 563-572.	2.8	7
439	Layer-by-Layer Assembled Hydrogen-Bonded Multilayer Poly(2-oxazoline) Membranes for Aqueous Separations. ACS Applied Polymer Materials, 2020, 2, 5398-5405.	4.4	7
440	<i>N</i> , <i>N</i> -Ru(<scp>ii</scp>)- <i>p</i> -cymene-poly(<i>N</i> -vinylpyrrolidone) surface functionalized gold nanoparticles: from organoruthenium complex to nanomaterial for antiproliferative activity. Dalton Transactions, 2021, 50, 8232-8242.	3.3	7
441	Substrate-independent and widely applicable deposition of antibacterial coatings. Trends in Biotechnology, 2023, 41, 63-76.	9.3	7
442	Microwave-assisted nitroxide-mediated polymerization of alkyl acrylates. E-Polymers, 2005, 5, .	3.0	6
443	Multiresponsive Behavior of Functional Poly(p-phenylene vinylene)s in Water. Polymers, 2016, 8, 365.	4.5	6
444	Ultra-high performance size-exclusion chromatography in polar solvents. Journal of Chromatography A, 2016, 1478, 43-49.	3.7	6
445	Defined High Molar Mass Poly(2â€Oxazoline)s. Angewandte Chemie, 2018, 130, 15626-15630.	2.0	6
446	Chemical Design of Nonâ€Ionic Polymer Brushes as Biointerfaces: Poly(2â€oxazine)s Outperform Both Poly(2â€oxazoline)s and PEG. Angewandte Chemie, 2018, 130, 11841-11846.	2.0	6
447	Unravelling the Miscibility of Poly(2-oxazoline)s: A Novel Polymer Class for the Formulation of Amorphous Solid Dispersions. Molecules, 2020, 25, 3587.	3.8	6
448	Fluorine-Containing Block and Gradient Copoly(2-oxazoline)s Based on 2-(3,3,3-Trifluoropropyl)-2-oxazoline: A Quest for the Optimal Self-Assembled Structure for ¹⁹ F Imaging. Biomacromolecules, 2021, 22, 2963-2975.	5.4	6
449	Tannic Acid-Stabilized Self-Degrading Temperature-Sensitive Poly(2- <i>n</i> -propyl-2-oxazoline)/Gellan Gum Capsules for Lipase Delivery. ACS Applied Bio Materials, 2021, 4, 7134-7146.	4.6	6
450	Design and Synthesis of Hybrid Thermo-Responsive Hydrogels Based on Poly(2-oxazoline) and Gelatin Derivatives. Gels, 2022, 8, 64.	4.5	6

#	Article	IF	CITATIONS
451	Fluorinated Ferrocene Moieties as a Platform for Redox-Responsive Polymer ¹⁹ F MRI Theranostics. Macromolecules, 2022, 55, 658-671.	4.8	6
452	Linear Poly(ethylenimine-propylenimine) Random Copolymers for Gene Delivery: From Polymer Synthesis to Efficient Transfection with High Serum Tolerance. Biomacromolecules, 2022, 23, 2459-2470.	5.4	6
453	Synthesis and Copper(I) Complexation of 3,6-Di(2-pyridyl)pyridazine and 2,2′-Bipyridine Ligands Functionalized with a Dangling Iridium(III) Complex. Australian Journal of Chemistry, 2007, 60, 229.	0.9	5
454	Preparation of polyurethane elastomers (PUEs) in a highâ€ŧhroughput workflow. Journal of Polymer Science Part A, 2011, 49, 301-313.	2.3	5
455	Linear polyethylenimine as (multi) functional initiator for organocatalytic l-lactide polymerization. Journal of Materials Chemistry B, 2015, 3, 612-619.	5.8	5
456	Cyclische Polymere: von einer wissenschaftlichen Kuriositäzu modernen Materialien für die Genübertragung und Oberflähenmodifikation. Angewandte Chemie, 2017, 129, 7140-7142.	2.0	5
457	Microphase segregation and selective chain scission of poly(2â€methylâ€2â€oxazoline)â€ <i>block</i> â€polystyrene. Journal of Polymer Science Part A, 2019, 57, 1349-1	.357.	5
458	Aging effect of atmospheric pressure plasma jet treated polycaprolactone polymer solutions on electrospinning properties. Journal of Applied Polymer Science, 2020, 137, 48914.	2.6	5
459	Understanding the temperature induced aggregation of silica nanoparticles decorated with temperature-responsive polymers: Can a small step in the chemical structure make a giant leap for a phase transition?. Journal of Colloid and Interface Science, 2021, 590, 249-259.	9.4	5
460	The race for strong and tough hydrogels. Matter, 2021, 4, 1456-1459.	10.0	5
461	Macrocyclization efficiency for poly(2-oxazoline)s and poly(2-oxazine)s. Polymer Chemistry, 2022, 13, 3975-3980.	3.9	5
462	Tailor-Made Copolymers via Reversible Addition Fragmentation Chain Transfer the Fast Way. ACS Symposium Series, 2006, , 473-485.	0.5	4
463	Grid Forming Metal Coordinating Macroligands: Synthesis and Complexation. ACS Symposium Series, 2006, , 63-71.	0.5	4
464	Ruthenium(II) Ions triggered direct supramolecular polymerization of bis-terpyridine poly(ethylene) Tj ETQq0 0 0 rg	gBT/Overl	oçk 10 Tf 50
465	One-Pot Synthesis of Charged Amphiphilic Diblock and Triblock Copolymers Via High-Throughput Cu(0)-Mediated Polymerization. Polymers, 2017, 9, 320.	4.5	4
466	Supramolecular Competitive Host–Guest Interaction Induced Reversible Macromolecular Metamorphosis. Macromolecular Rapid Communications, 2019, 40, e1900376.	3.9	4
467	Cationâ~ï€ Interactions Accelerate the Living Cationic Ring-Opening Polymerization of Unsaturated 2-Alkyl-2-oxazolines. Macromolecules, 2020, 53, 3832-3846.	4.8	4

468Strukturelle Diversifizierung von Pillar[n]arenâ€Makrocyclen. Angewandte Chemie, 2020, 132, 6374-6376.2.04

#	Article	IF	CITATIONS
469	Supramolecular Hydrogels with Tunable Swelling by Host Complexation with Cyclobis(paraquat- <i>p</i> -phenylene). Macromolecules, 2021, 54, 1926-1933.	4.8	4
470	2-[1-(1-Naphthyl)-1 <i>H</i> -1,2,3-triazol-4-yl]pyridine. Acta Crystallographica Section E: Structure Reports Online, 2009, 65, o1146-o1146.	0.2	3
471	Synthesis and Properties of Polyalkylenimines. RSC Polymer Chemistry Series, 2014, , 30-61.	0.2	3
472	Mainâ€Chain Chiral Poly(2â€oxazoline)s: Influence of Alkyl Sideâ€Chain on Secondary Structure Formation in the Solid State. Macromolecular Symposia, 2015, 350, 43-54.	0.7	3
473	Colorimetric Sensors: Dye Modification of Nanofibrous Silicon Oxide Membranes for Colorimetric HCl and NH3Sensing (Adv. Funct. Mater. 33/2016). Advanced Functional Materials, 2016, 26, 6136-6136.	14.9	3
474	Synthetisch hergestellte, transient thermoresponsive Homopolymere mit einer oberen kritischen LA¶sungstemperatur für physiologisch relevante Anwendungen. Angewandte Chemie, 2019, 131, 7948-7954.	2.0	3
475	Using Ion Mobility–Mass Spectrometry to Extract Physicochemical Enthalpic and Entropic Contributions from Synthetic Polymers. Journal of the American Society for Mass Spectrometry, 2021, 32, 330-339.	2.8	3
476	Towards the understanding of halogenation in peptide hydrogels: a quantum chemical approach. Materials Advances, 2021, 2, 4792-4803.	5.4	3
477	Supramolecular control over pH- and temperature-responsive dialkoxynaphthalene-functionalized poly(2-(dimethylamino)ethyl methacrylate) in water. European Polymer Journal, 2021, 148, 110366.	5.4	3
478	Ecoâ€Friendly Colorimetric Nanofiber Design: Halochromic Sensors with Tunable pHâ€Sensing Regime Based on 2â€Ethylâ€2â€Oxazoline and 2â€ <i>n</i> àâ€Butylâ€2â€Oxazoline Statistical Copolymers Functionalized Alizarin Yellow R. Advanced Functional Materials, 2022, 32, 2106859.	d with	3
479	Asymmetric Incorporation of Silver Nanoparticles in Polymeric Assemblies by Coassembly of Tadpoleâ€Like Nanoparticles and Amphiphilic Block Copolymers. Macromolecular Rapid Communications, 2021, 42, 2100354.	3.9	3
480	Differences and similarities between mono-, bi- or tetrafunctional initiated cationic ring-opening polymerization of 2-oxazolines. Polymer Chemistry, 2022, 13, 861-876.	3.9	3
481	Upscaling Microwave-Assisted Polymerizations. Advances in Polymer Science, 2016, , 295-307.	0.8	2
482	A Dibenzoazacyclooctyne as a Reactive Chain Stopper for [2]Rotaxanes. European Journal of Organic Chemistry, 2017, 2017, 3107-3113.	2.4	2
483	Smart polymeric gels. , 2018, , 179-230.		2
484	Thioacetateâ€Based Initiators for the Synthesis of Thiolâ€Endâ€Functionalized Poly(2â€oxazoline)s. Macromolecular Rapid Communications, 2020, 41, 2000320.	3.9	2
485	[2 × 2] metallo-supramolecular grids based on 4,6-bis((1H-1,2,3-triazol-4-yl)-pyridin-2-yl)-2-phenylpyrimidine ligands: from discrete [2 × 2] grid structures to star-shaped supramolecular polymeric architectures. Dalton Transactions, 2021, 50, 8746-8751	3.3	2
486	Accelerated Postâ€Polymerization Amidation of Polymers with Sideâ€Chain Ester Groups by Intramolecular Activation. Angewandte Chemie, 2022, 134, .	2.0	2

#	Article	IF	CITATIONS
487	Special Issue on Microwaves & Polymers. Macromolecular Rapid Communications, 2007, 28, 367-367.	3.9	1
488	3-(2,2′:6′,2′′-Terpyridin-4′-yloxy)propyl toluene-4-sulfonate. Acta Crystallographica Section E: Struc Reports Online, 2007, 63, o2311-o2313.	ture 0.2	1
489	Hydroxy Functional Acrylates: Enzymatic Synthesis and Free Radical Polymerization. Macromolecular Symposia, 2010, 296, 49-52.	0.7	1
490	Verification of Selected Key Assumptions for the Analysis of Depthâ€Sensing Indentation Data. Macromolecular Materials and Engineering, 2013, 298, 78-88.	3.6	1
491	Gold Nanoparticles: Colorimetric Logic Gates Based on Poly(2â€alkylâ€2â€oxazoline)â€Coated Gold Nanoparticles (Adv. Funct. Mater. 17/2015). Advanced Functional Materials, 2015, 25, 2627-2627.	14.9	1
492	High-Throughput Synthesis of Thermoresponsive Poly(oligoethylene glycol acrylate) Copolymers by RAFT Polymerization. ACS Symposium Series, 2015, , 63-77.	0.5	1
493	Carbohydrate-Based Initiators for the Cationic Ring-Opening Polymerization of 2-Ethyl-2-Oxazoline. Methods in Molecular Biology, 2016, 1367, 49-59.	0.9	1
494	The Future of Polymer Science. Macromolecular Rapid Communications, 2018, 39, 1800458.	3.9	1
495	Steuerung komplexer Polymermaterialien mit Licht: Wirklichkeit oder Illusion?. Angewandte Chemie, 2018, 130, 8073-8075.	2.0	1
496	The Influence of Preâ€Electrospinning Plasma Treatment on Physicochemical Characteristics of PLA Nanofibers. Macromolecular Materials and Engineering, 2019, 304, 1900391.	3.6	1
497	Poly(2-isopropenyl-2-oxazoline) as a Versatile Platform for Multi-Functional Materials. Proceedings (mdpi), 2019, 29, .	0.2	1
498	Effect of Host–Guest Complexation on the Thermoresponsive Behavior of Poly(oligo ethylene glycol) Tj ETQq0 (Communications, 2021, 42, 2100068.) 0 rgBT /(3.9	Overlock 10 ⁻ 1
499	Chapter 7. Polymeric Temperature Sensors. RSC Nanoscience and Nanotechnology, 2015, , 190-236.	0.2	1
500	Mechanism insights in controlling host–guest (de)complexation by thermoresponsive polymer phase transitions. Polymer Chemistry, 0, , .	3.9	1
501	Combinatorial methods and high-throughput experimentation in synthetic polymer chemistry. Materials Research Society Symposia Proceedings, 2003, 804, 7.	0.1	0
502	Synthesis of an Isocyanate-Functionalized Terpyridine as Building Block for Metallo-Supramolecular Polymers. Synlett, 2004, 2004, 1779-1783.	1.8	0
503	Ethyl 5,5′′-dimethyl-2,2′;6′,2′′-terpyridine-4′-carboxylate. Acta Crystallographica Section E: St Reports Online, 2005, 61, o4322-o4324.	ructure 0.2	0
504	5rd DPI Workshop on Combinatorial and High-Throughput Experimentation in Polymer Science –Special Focus on Microwave Synthesis. Macromolecular Rapid Communications, 2007, 28, 509-513.	3.9	0

#	Article	IF	CITATIONS
505	Macromol. Rapid Commun. 8/2009. Macromolecular Rapid Communications, 2009, 30, .	3.9	0
506	Macromol. Rapid Commun. 9-10/2010. Macromolecular Rapid Communications, 2010, 31, n/a-n/a.	3.9	0
507	Macromol. Rapid Commun. 18/2011. Macromolecular Rapid Communications, 2011, 32, .	3.9	0
508	First Symposium on Poly(2â€oxazoline)s and Related Pseudoâ€Polypeptide Structures. Macromolecular Chemistry and Physics, 2012, 213, 2669-2673.	2.2	0
509	Innenrücktitelbild: Programmable Polymer-Based Supramolecular Temperature Sensor with a Memory Function (Angew. Chem. 20/2014). Angewandte Chemie, 2014, 126, 5315-5315.	2.0	0
510	Editorial: Precision polymer materials. European Polymer Journal, 2015, 62, 244-246.	5.4	0
511	Copper Curiosity: From Blue Blood to Click Chemistry. Australian Journal of Chemistry, 2019, 72, 490.	0.9	0
512	Thermoresponsive DNA by Intercalation of dsDNA with Oligoethyleneâ€Glycolâ€Functionalized Smallâ€Molecule Intercalators. Macromolecular Rapid Communications, 2019, 40, e1800900.	3.9	0
513	Poly(2-oxazoline)–protein conjugates. , 2020, , 407-420.		0
514	Crystal structures of three <i>N</i> -(pyridine-2-carbonyl)pyridine-2-carboxamides as potential ligands for supramolecular chemistry. Acta Crystallographica Section E: Crystallographic Communications, 2021, 77, 958-964.	0.5	0
515	Ecoâ€Friendly Colorimetric Nanofiber Design: Halochromic Sensors with Tunable pHâ€Sensing Regime Based on 2â€Ethylâ€2â€Oxazoline and 2â€ <i>n</i> â€Butylâ€2â€Oxazoline Statistical Copolymers Functionalized Alizarin Yellow R (Adv. Funct. Mater. 1/2022). Advanced Functional Materials, 2022, 32, .	144th	0
516	Poly(2― <i>n</i> â€propylâ€2â€oxazoline) Surface Modified Quartz Crystal Microbalance Sensor for Highly Sensitive Detection of Alkali Cyanides, Alkali Chlorides, and Other Ionic Species in Water. Advanced Materials Interfaces, 0, , 2200135.	3.7	0