
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1148013/publications.pdf Version: 2024-02-01

ΗΛΟ ΥΛΝ

#	Article	IF	CITATIONS
1	DNA-Templated Self-Assembly of Protein Arrays and Highly Conductive Nanowires. Science, 2003, 301, 1882-1884.	12.6	1,687
2	Challenges and opportunities for structural DNA nanotechnology. Nature Nanotechnology, 2011, 6, 763-772.	31.5	1,169
3	DNA Origami with Complex Curvatures in Three-Dimensional Space. Science, 2011, 332, 342-346.	12.6	1,074
4	A DNA nanorobot functions as a cancer therapeutic in response to a molecular trigger in vivo. Nature Biotechnology, 2018, 36, 258-264.	17.5	1,066
5	Molecular robots guided by prescriptive landscapes. Nature, 2010, 465, 206-210.	27.8	843
6	DNA Origami: Scaffolds for Creating Higher Order Structures. Chemical Reviews, 2017, 117, 12584-12640.	47.7	834
7	A robust DNA mechanical device controlled by hybridization topology. Nature, 2002, 415, 62-65.	27.8	758
8	Control of Self-Assembly of DNA Tubules Through Integration of Gold Nanoparticles. Science, 2009, 323, 112-116.	12.6	680
9	DNA Origami as a Carrier for Circumvention of Drug Resistance. Journal of the American Chemical Society, 2012, 134, 13396-13403.	13.7	653
10	Construction, Analysis, Ligation, and Self-Assembly of DNA Triple Crossover Complexes. Journal of the American Chemical Society, 2000, 122, 1848-1860.	13.7	644
11	Interenzyme Substrate Diffusion for an Enzyme Cascade Organized on Spatially Addressable DNA Nanostructures. Journal of the American Chemical Society, 2012, 134, 5516-5519.	13.7	623
12	Gold Nanoparticle Self-Similar Chain Structure Organized by DNA Origami. Journal of the American Chemical Society, 2010, 132, 3248-3249.	13.7	502
13	Designer nanoscale DNA assemblies programmed from the top down. Science, 2016, 352, 1534-1534.	12.6	500
14	Structural DNA Nanotechnology: State of the Art and Future Perspective. Journal of the American Chemical Society, 2014, 136, 11198-11211.	13.7	492
15	A DNA Nanostructureâ€based Biomolecular Probe Carrier Platform for Electrochemical Biosensing. Advanced Materials, 2010, 22, 4754-4758.	21.0	484
16	DNA origami: a quantum leap for self-assembly of complex structures. Chemical Society Reviews, 2011, 40, 5636.	38.1	444
17	A Unidirectional DNA Walker That Moves Autonomously along a Track. Angewandte Chemie - International Edition, 2004, 43, 4906-4911.	13.8	441
18	Self-assembled DNA nanostructures for distance-dependent multivalent ligand–protein binding. Nature Nanotechnology, 2008, 3, 418-422.	31.5	439

#	Article	IF	CITATIONS
19	Self-Assembled Water-Soluble Nucleic Acid Probe Tiles for Label-Free RNA Hybridization Assays. Science, 2008, 319, 180-183.	12.6	432
20	Singleâ€Particle Tracking and Modulation of Cell Entry Pathways of a Tetrahedral DNA Nanostructure in Live Cells. Angewandte Chemie - International Edition, 2014, 53, 7745-7750.	13.8	430
21	Multi-enzyme complexes on DNA scaffolds capable of substrate channelling with an artificial swinging arm. Nature Nanotechnology, 2014, 9, 531-536.	31.5	423
22	DNA origami. Nature Reviews Methods Primers, 2021, 1, .	21.2	382
23	Multilayer DNA Origami Packed on a Square Lattice. Journal of the American Chemical Society, 2009, 131, 15903-15908.	13.7	380
24	DNA Tile Based Self-Assembly: Building Complex Nanoarchitectures. ChemPhysChem, 2006, 7, 1641-1647.	2.1	352
25	Complex wireframe DNA origami nanostructures with multi-arm junction vertices. Nature Nanotechnology, 2015, 10, 779-784.	31.5	349
26	Nanocaged enzymes with enhanced catalytic activity and increased stability against protease digestion. Nature Communications, 2016, 7, 10619.	12.8	346
27	Complex silica composite nanomaterials templated with DNA origami. Nature, 2018, 559, 593-598.	27.8	346
28	DNA-Templated Self-Assembly of Protein and Nanoparticle Linear Arrays. Journal of the American Chemical Society, 2004, 126, 418-419.	13.7	331
29	Periodic Square-Like Gold Nanoparticle Arrays Templated by Self-Assembled 2D DNA Nanogrids on a Surface. Nano Letters, 2006, 6, 248-251.	9.1	323
30	Scaffolded DNA Origami of a DNA Tetrahedron Molecular Container. Nano Letters, 2009, 9, 2445-2447.	9.1	306
31	Directed nucleation assembly of DNA tile complexes for barcode-patterned lattices. Proceedings of the United States of America, 2003, 100, 8103-8108.	7.1	305
32	Stability of DNA Origami Nanoarrays in Cell Lysate. Nano Letters, 2011, 11, 1477-1482.	9.1	303
33	DNA-Templated Self-Assembly of Two-Dimensional and Periodical Gold Nanoparticle Arrays. Angewandte Chemie - International Edition, 2006, 45, 730-735.	13.8	301
34	DNA origami nanostructures can exhibit preferential renal uptake and alleviate acute kidney injury. Nature Biomedical Engineering, 2018, 2, 865-877.	22.5	297
35	Folding and cutting DNA into reconfigurable topological nanostructures. Nature Nanotechnology, 2010, 5, 712-717.	31.5	289
36	A DNA Nanostructure Platform for Directed Assembly of Synthetic Vaccines. Nano Letters, 2012, 12, 4254-4259.	9.1	280

#	Article	IF	CITATIONS
37	DNAâ€Origamiâ€Directed Selfâ€Assembly of Discrete Silverâ€Nanoparticle Architectures. Angewandte Chemie - International Edition, 2010, 49, 2700-2704.	13.8	278
38	A DNA tweezer-actuated enzyme nanoreactor. Nature Communications, 2013, 4, 2127.	12.8	267
39	Programmable DNA Self-Assemblies for Nanoscale Organization of Ligands and Proteins. Nano Letters, 2005, 5, 729-733.	9.1	266
40	Toward Reliable Gold Nanoparticle Patterning On Self-Assembled DNA Nanoscaffold. Journal of the American Chemical Society, 2008, 130, 7820-7821.	13.7	266
41	DNA-Directed Artificial Light-Harvesting Antenna. Journal of the American Chemical Society, 2011, 133, 11985-11993.	13.7	263
42	Designer DNA Nanoarchitectures. Biochemistry, 2009, 48, 1663-1674.	2.5	260
43	Engineering nucleic acid structures for programmable molecular circuitry and intracellular biocomputation. Nature Chemistry, 2017, 9, 1056-1067.	13.6	259
44	Spatially Addressable Multiprotein Nanoarrays Templated by Aptamer-Tagged DNA Nanoarchitectures. Journal of the American Chemical Society, 2007, 129, 10304-10305.	13.7	258
45	DNA Gridiron Nanostructures Based on Four-Arm Junctions. Science, 2013, 339, 1412-1415.	12.6	246
46	DNA Directed Self-Assembly of Anisotropic Plasmonic Nanostructures. Journal of the American Chemical Society, 2011, 133, 17606-17609.	13.7	214
47	Single-stranded DNA and RNA origami. Science, 2017, 358, .	12.6	202
48	Aptamer-Directed Self-Assembly of Protein Arrays on a DNA Nanostructure. Angewandte Chemie - International Edition, 2005, 44, 4333-4338.	13.8	192
49	Organizing DNA Origami Tiles into Larger Structures Using Preformed Scaffold Frames. Nano Letters, 2011, 11, 2997-3002.	9.1	174
50	Paranemic Crossover DNA:Â A Generalized Holliday Structure with Applications in Nanotechnology. Journal of the American Chemical Society, 2004, 126, 1666-1674.	13.7	173
51	Programming nanoparticle valence bonds with single-stranded DNA encoders. Nature Materials, 2020, 19, 781-788.	27.5	166
52	DNA origami: a history and current perspective. Current Opinion in Chemical Biology, 2010, 14, 608-615.	6.1	161
53	DNAâ€Tileâ€Directed Selfâ€Assembly of Quantum Dots into Twoâ€Dimensional Nanopatterns. Angewandte Chemie - International Edition, 2008, 47, 5157-5159.	13.8	151
54	A Study of DNA Tube Formation Mechanisms Using 4-, 8-, and 12-Helix DNA Nanostructures. Journal of the American Chemical Society, 2006, 128, 4414-4421.	13.7	141

#	Article	IF	CITATIONS
55	Self-Assembled Signaling Aptamer DNA Arrays for Protein Detection. Angewandte Chemie - International Edition, 2006, 45, 5296-5301.	13.8	141
56	Spatially-Interactive Biomolecular Networks Organized by Nucleic Acid Nanostructures. Accounts of Chemical Research, 2012, 45, 1215-1226.	15.6	140
57	DNA-Guided Plasmonic Helix with Switchable Chirality. Journal of the American Chemical Society, 2018, 140, 11763-11770.	13.7	138
58	Encapsulation of Gold Nanoparticles in a DNA Origami Cage. Angewandte Chemie - International Edition, 2011, 50, 2041-2044.	13.8	135
59	DNA Nanostructures as Programmable Biomolecular Scaffolds. Bioconjugate Chemistry, 2015, 26, 1381-1395.	3.6	134
60	DNA Self-assembly for Nanomedicine. Advanced Drug Delivery Reviews, 2010, 62, 617-625.	13.7	127
61	Self-Assembled Peptide Nanoarrays: An Approach to Studying Protein–Protein Interactions. Angewandte Chemie - International Edition, 2007, 46, 3051-3054.	13.8	123
62	Molecular Behavior of DNA Origami in Higher-Order Self-Assembly. Journal of the American Chemical Society, 2010, 132, 13545-13552.	13.7	123
63	A Route to Scale Up DNA Origami Using DNA Tiles as Folding Staples. Angewandte Chemie - International Edition, 2010, 49, 1414-1417.	13.8	122
64	Directional Regulation of Enzyme Pathways through the Control of Substrate Channeling on a DNA Origami Scaffold. Angewandte Chemie - International Edition, 2016, 55, 7483-7486.	13.8	122
65	Tunable Nanoscale Cages from Self-Assembling DNA and Protein Building Blocks. ACS Nano, 2019, 13, 3545-3554.	14.6	121
66	Self-Assembly of Symmetric Finite-Size DNA Nanoarrays. Journal of the American Chemical Society, 2005, 127, 17140-17141.	13.7	120
67	Immobilization and One-Dimensional Arrangement of Virus Capsids with Nanoscale Precision Using DNA Origami. Nano Letters, 2010, 10, 2714-2720.	9.1	118
68	Charge Transport within a Three-Dimensional DNA Nanostructure Framework. Journal of the American Chemical Society, 2012, 134, 13148-13151.	13.7	118
69	Autonomously designed free-form 2D DNA origami. Science Advances, 2019, 5, eaav0655.	10.3	115
70	In vivo cloning of artificial DNA nanostructures. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 17626-17631.	7.1	111
71	Exploring the speed limit of toehold exchange with a cartwheeling DNA acrobat. Nature Nanotechnology, 2018, 13, 723-729.	31.5	109
72	Robust DNA-Functionalized Core/Shell Quantum Dots with Fluorescent Emission Spanning from UV–vis to Near-IR and Compatible with DNA-Directed Self-Assembly. Journal of the American Chemical Society, 2012, 134, 17424-17427.	13.7	108

#	Article	IF	CITATIONS
73	A Synthetic Light-Driven Substrate Channeling System for Precise Regulation of Enzyme Cascade Activity Based on DNA Origami. Journal of the American Chemical Society, 2018, 140, 8990-8996.	13.7	108
74	Programmed coherent coupling in a synthetic DNA-based excitonic circuit. Nature Materials, 2018, 17, 159-166.	27.5	106
75	Lattice-free prediction of three-dimensional structure of programmed DNA assemblies. Nature Communications, 2014, 5, 5578.	12.8	101
76	A DNA-Directed Light-Harvesting/Reaction Center System. Journal of the American Chemical Society, 2014, 136, 16618-16625.	13.7	100
77	Assembly of multienzyme complexes on DNA nanostructures. Nature Protocols, 2016, 11, 2243-2273.	12.0	100
78	Meta-DNA structures. Nature Chemistry, 2020, 12, 1067-1075.	13.6	98
79	Siteâ€Specific Synthesis and In Situ Immobilization of Fluorescent Silver Nanoclusters on DNA Nanoscaffolds by Use of the Tollens Reaction. Angewandte Chemie - International Edition, 2011, 50, 4176-4179.	13.8	94
80	Interconnecting Gold Islands with DNA Origami Nanotubes. Nano Letters, 2010, 10, 5065-5069.	9.1	93
81	Designer DNA nanostructures for therapeutics. CheM, 2021, 7, 1156-1179.	11.7	91
82	Paranemic Cohesion of Topologically-Closed DNA Molecules. Journal of the American Chemical Society, 2002, 124, 12940-12941.	13.7	90
83	A Replicable Tetrahedral Nanostructure Self-Assembled from a Single DNA Strand. Journal of the American Chemical Society, 2009, 131, 13093-13098.	13.7	89
84	MATERIALS SCIENCE: Nucleic Acid Nanotechnology. Science, 2004, 306, 2048-2049.	12.6	88
85	DNA–Cholesterol Barges as Programmable Membrane-Exploring Agents. ACS Nano, 2014, 8, 5641-5649.	14.6	85
86	Cuboid Vesicles Formed by Frameâ€Guided Assembly on DNA Origami Scaffolds. Angewandte Chemie - International Edition, 2017, 56, 1586-1589.	13.8	85
87	Tiamat: A Three-Dimensional Editing Tool for Complex DNA Structures. Lecture Notes in Computer Science, 2009, , 90-101.	1.3	83
88	Nicking-Assisted Reactant Recycle To Implement Entropy-Driven DNA Circuit. Journal of the American Chemical Society, 2019, 141, 17189-17197.	13.7	82
89	Quantum Dot Bioconjugation during Core–Shell Synthesis. Angewandte Chemie - International Edition, 2008, 47, 316-319.	13.8	80
90	Controlled Delivery of DNA Origami on Patterned Surfaces. Small, 2009, 5, 1942-1946.	10.0	80

#	Article	IF	CITATIONS
91	DNA Origami with Double-Stranded DNA As a Unified Scaffold. ACS Nano, 2012, 6, 8209-8215.	14.6	77
92	DNAzyme-Based Logic Gate-Mediated DNA Self-Assembly. Nano Letters, 2016, 16, 736-741.	9.1	77
93	Programmable Supraâ€Assembly of a DNA Surface Adapter for Tunable Chiral Directional Selfâ€Assembly of Gold Nanorods. Angewandte Chemie - International Edition, 2017, 56, 14632-14636.	13.8	76
94	Mapping the Thermal Behavior of DNA Origami Nanostructures. Journal of the American Chemical Society, 2013, 135, 6165-6176.	13.7	73
95	DNA based arithmetic function: a half adder based on DNA strand displacement. Nanoscale, 2016, 8, 3775-3784.	5.6	71
96	Paranemic Crossover DNA: There and Back Again. Chemical Reviews, 2019, 119, 6273-6289.	47.7	69
97	Rolling Circle Enzymatic Replication of a Complex Multi-Crossover DNA Nanostructure. Journal of the American Chemical Society, 2007, 129, 14475-14481.	13.7	66
98	Templateâ€Directed Nucleation and Growth of Inorganic Nanoparticles on DNA Scaffolds. Angewandte Chemie - International Edition, 2009, 48, 8494-8496.	13.8	66
99	Reconfigurable DNA Origami to Generate Quasifractal Patterns. Nano Letters, 2012, 12, 3290-3295.	9.1	66
100	Parallel Molecular Computations of Pairwise Exclusive-Or (XOR) Using DNA "String Tile― Self-Assembly. Journal of the American Chemical Society, 2003, 125, 14246-14247.	13.7	65
101	Complex Archimedean Tiling Self-Assembled from DNA Nanostructures. Journal of the American Chemical Society, 2013, 135, 7458-7461.	13.7	63
102	Construction and Structure Determination of a Three-Dimensional DNA Crystal. Journal of the American Chemical Society, 2016, 138, 10047-10054.	13.7	63
103	Efficient Long-Range, Directional Energy Transfer through DNA-Templated Dye Aggregates. Journal of the American Chemical Society, 2019, 141, 8473-8481.	13.7	63
104	Layered-Crossover Tiles with Precisely Tunable Angles for 2D and 3D DNA Crystal Engineering. Journal of the American Chemical Society, 2018, 140, 14670-14676.	13.7	62
105	Functional DNA Nanotube Arrays: Bottomâ€Up Meets Topâ€Down. Angewandte Chemie - International Edition, 2007, 46, 6089-6092.	13.8	61
106	Electronic nanostructures templated on self-assembled DNA scaffolds. Nanotechnology, 2004, 15, S525-S527.	2.6	60
107	Precise and Programmable Detection of Mutations Using Ultraspecific Riboregulators. Cell, 2020, 180, 1018-1032.e16.	28.9	57
108	Rolling-Circle Amplification of a DNA Nanojunction. Angewandte Chemie - International Edition, 2006, 45, 7537-7539.	13.8	55

#	Article	IF	CITATIONS
109	A Threeâ€Enzyme Pathway with an Optimised Geometric Arrangement to Facilitate Substrate Transfer. ChemBioChem, 2016, 17, 1097-1101.	2.6	54
110	Tuning the Cavity Size and Chirality of Self-Assembling 3D DNA Crystals. Journal of the American Chemical Society, 2017, 139, 11254-11260.	13.7	47
111	RNA Origami Nanostructures for Potent and Safe Anticancer Immunotherapy. ACS Nano, 2020, 14, 4727-4740.	14.6	47
112	Selfâ€Assembly of a 3D DNA Crystal Structure with Rationally Designed Sixâ€Fold Symmetry. Angewandte Chemie - International Edition, 2018, 57, 12504-12507.	13.8	43
113	Multifactorial Modulation of Binding and Dissociation Kinetics on Two-Dimensional DNA Nanostructures. Nano Letters, 2013, 13, 2754-2759.	9.1	42
114	Computing with Nucleic Acids. , 2005, , 427-455.		41
115	DNA origami templated self-assembly of discrete length single wall carbon nanotubes. Organic and Biomolecular Chemistry, 2013, 11, 596-598.	2.8	40
116	Programming molecular topologies from single-stranded nucleic acids. Nature Communications, 2018, 9, 4579.	12.8	39
117	2D Enzyme Cascade Network with Efficient Substrate Channeling by Swinging Arms. ChemBioChem, 2018, 19, 212-216.	2.6	35
118	Selfâ€Assembly of Complex DNA Tessellations by Using Lowâ€&ymmetry Multiâ€arm DNA Tiles. Angewandte Chemie - International Edition, 2016, 55, 8860-8863.	13.8	34
119	Solidifying framework nucleic acids with silica. Nature Protocols, 2019, 14, 2416-2436.	12.0	34
120	Watching a Single Fluorophore Molecule Walk into a Plasmonic Hotspot. ACS Photonics, 2019, 6, 985-993.	6.6	34
121	Kinetics of RNA and RNA:DNA Hybrid Strand Displacement. ACS Synthetic Biology, 2021, 10, 3066-3073.	3.8	34
122	Steric Crowding and the Kinetics of DNA Hybridization within a DNA Nanostructure System. ACS Nano, 2012, 6, 5521-5530.	14.6	33
123	Low Temperature Assembly of Functional 3D DNA-PNA-Protein Complexes. Journal of the American Chemical Society, 2014, 136, 8283-8295.	13.7	33
124	Hierarchical Assembly of Plasmonic Nanostructures Using Virus Capsid Scaffolds on DNA Origami Templates. ACS Nano, 2014, 8, 7896-7904.	14.6	33
125	Prescribing Silver Chirality with DNA Origami. Journal of the American Chemical Society, 2021, 143, 8639-8646.	13.7	33
126	Design and simulation of DNA, RNA and hybrid protein–nucleic acid nanostructures with oxView. Nature Protocols, 2022, 17, 1762-1788.	12.0	33

#	Article	IF	CITATIONS
127	A perspective on functionalizing colloidal quantum dots with DNA. Nano Research, 2013, 6, 853-870.	10.4	31
128	3D Framework DNA Origami with Layered Crossovers. Angewandte Chemie - International Edition, 2016, 55, 12832-12835.	13.8	31
129	A reversibly gated protein-transporting membrane channel made of DNA. Nature Communications, 2022, 13, 2271.	12.8	30
130	DNAâ€Nanoscaffoldâ€Assisted Selection of Femtomolar Bivalent Human αâ€Thrombin Aptamers with Potent Anticoagulant Activity. ChemBioChem, 2019, 20, 2494-2503.	2.6	29
131	Effect of DNA Hairpin Loops on the Twist of Planar DNA Origami Tiles. Langmuir, 2012, 28, 1959-1965.	3.5	28
132	Controlled Nucleation and Growth of DNA Tile Arrays within Prescribed DNA Origami Frames and Their Dynamics. Journal of the American Chemical Society, 2014, 136, 3724-3727.	13.7	28
133	Redox Engineering of Cytochrome c using DNA Nanostructure-Based Charged Encapsulation and Spatial Control. ACS Applied Materials & amp; Interfaces, 2019, 11, 13874-13880.	8.0	27
134	Programmable allosteric DNA regulations for molecular networks and nanomachines. Science Advances, 2022, 8, eabl4589.	10.3	27
135	Constructing Submonolayer DNA Origami Scaffold on Gold Electrode for Wiring of Redox Enzymatic Cascade Pathways. ACS Applied Materials & Interfaces, 2019, 11, 13881-13887.	8.0	25
136	The influence of Holliday junction sequence and dynamics on DNA crystal self-assembly. Nature Communications, 2022, 13, .	12.8	24
137	Practical aspects of structural and dynamic DNA nanotechnology. MRS Bulletin, 2017, 42, 889-896.	3.5	23
138	Directed Energy Transfer through DNA-Templated J-Aggregates. Bioconjugate Chemistry, 2019, 30, 1870-1879.	3.6	22
139	A Selfâ€Assembled Rhombohedral DNA Crystal Scaffold with Tunable Cavity Sizes and Highâ€Resolution Structural Detail. Angewandte Chemie - International Edition, 2020, 59, 18619-18626.	13.8	22
140	Directional Regulation of Enzyme Pathways through the Control of Substrate Channeling on a DNA Origami Scaffold. Angewandte Chemie, 2016, 128, 7609-7612.	2.0	21
141	Rational design of DNA-actuated enzyme nanoreactors guided by single molecule analysis. Nanoscale, 2016, 8, 3125-3137.	5.6	21
142	Towards Rapid DNA Sequencing: Detecting Single-Stranded DNA with a Solid-State Nanopore. Small, 2006, 2, 310-312.	10.0	20
143	Programmable Supraâ€Assembly of a DNA Surface Adapter for Tunable Chiral Directional Selfâ€Assembly of Gold Nanorods. Angewandte Chemie, 2017, 129, 14824-14828.	2.0	20
144	High energy storage density with high power density in Bi _{0.2} Sr _{0.7} TiO ₃ /BiFeO ₃ multilayer thin films. Journal of Materials Chemistry C, 2021, 9, 4652-4660.	5.5	20

#	Article	IF	CITATIONS
145	DNA Programmable Self-Assembly of Planar, Thin-Layered Chiral Nanoparticle Superstructures with Complex Two-Dimensional Patterns. ACS Nano, 2021, 15, 16664-16672.	14.6	20
146	Two-dimensional LNA/DNA arrays: estimating the helicity of LNA/DNA hybrid duplex. Chemical Communications, 2006, , 2675.	4.1	19
147	Unidirectional Scaffoldâ€Strand Arrangement in DNA Origami. Angewandte Chemie - International Edition, 2013, 52, 9031-9034.	13.8	19
148	Cell Nucleus Penetration by Quantum Dots Induced by Nuclear Staining Organic Fluorophore and UVâ€Irradiation. Advanced Materials, 2008, 20, 3468-3473.	21.0	18
149	Size-Selective Incorporation of DNA Nanocages into Nanoporous Antimony-Doped Tin Oxide Materials. ACS Nano, 2011, 5, 6060-6068.	14.6	18
150	On-chip isotachophoresis separation of functional DNA origami capture nanoarrays from cell lysate. Nano Research, 2013, 6, 712-719.	10.4	18
151	DNA functionalization of colloidal II–VI semiconductor nanowires for multiplex nanoheterostructures. Chemical Science, 2013, 4, 2234.	7.4	18
152	Understanding the Elementary Steps in DNA Tile-Based Self-Assembly. ACS Nano, 2017, 11, 9370-9381.	14.6	18
153	Complex assemblies and crystals guided by DNA. Nature Materials, 2020, 19, 694-700.	27.5	18
154	A localized DNA finite-state machine with temporal resolution. Science Advances, 2022, 8, eabm9530.	10.3	18
155	Kinetics of DNA Tile Dimerization. ACS Nano, 2014, 8, 5826-5832.	14.6	17
156	Multi-domain BNiT modification enhanced the piezoelectric properties of BNT-based lead-free thin films. Journal of Materials Chemistry C, 2020, 8, 17114-17121.	5.5	17
157	Photocurrent Generation by Photosynthetic Purple Bacterial Reaction Centers Interfaced with a Porous Antimony-Doped Tin Oxide (ATO) Electrode. ACS Applied Materials & Interfaces, 2016, 8, 25104-25110.	8.0	15
158	Orange Carotenoid Protein as a Control Element in an Antenna System Based on a DNA Nanostructure. Nano Letters, 2017, 17, 1174-1180.	9.1	15
159	Cuboid Vesicles Formed by Frameâ€Guided Assembly on DNA Origami Scaffolds. Angewandte Chemie, 2017, 129, 1608-1611.	2.0	14
160	3D Framework DNA Origami with Layered Crossovers. Angewandte Chemie, 2016, 128, 13024-13027.	2.0	12
161	DNA-templated programmable excitonic wires for micron-scale exciton transport. CheM, 2022, 8, 2442-2459.	11.7	12
162	Selfâ€Assembly of a 3D DNA Crystal Structure with Rationally Designed Sixâ€Fold Symmetry. Angewandte Chemie, 2018, 130, 12684-12687.	2.0	11

#	Article	IF	CITATIONS
163	Selfâ€Assembly of Complex DNA Tessellations by Using Low‣ymmetry Multiâ€arm DNA Tiles. Angewandte Chemie, 2016, 128, 9006-9009.	2.0	10
164	DNA-Assembled Chiral Satellite-Core Nanoparticle Superstructures: Two-State Chiral Interactions from Dynamic and Static Conformations. Nano Letters, 2022, 22, 4784-4791.	9.1	10
165	Nanoscale mazes. Nature Nanotechnology, 2017, 12, 189-190.	31.5	9
166	Interfacing DNA nanotechnology and biomimetic photonic complexes: advances and prospects in energy and biomedicine. Journal of Nanobiotechnology, 2022, 20, .	9.1	9
167	Functionalized DNA Nanostructures for Nanomedicine. Israel Journal of Chemistry, 2013, 53, 555-566.	2.3	8
168	Regulating DNA Self-Assembly Dynamics with Controlled Nucleation. ACS Nano, 2021, 15, 5384-5396.	14.6	8
169	DNA Kirigami Driven by Polymeraseâ€Triggered Strand Displacement. Small, 2022, 18, e2201478.	10.0	8
170	Interfacing Photosystem I Reaction Centers with a Porous Antimony-Doped Tin Oxide Electrode to Perform Light-Driven Redox Chemistry. ACS Applied Electronic Materials, 2021, 3, 2087-2096.	4.3	7
171	Modular Self-Assembly of DNA Lattices with Tunable Periodicity. Small, 2005, 1, 327-330.	10.0	6
172	A Selfâ€Assembled Rhombohedral DNA Crystal Scaffold with Tunable Cavity Sizes and Highâ€Resolution Structural Detail. Angewandte Chemie, 2020, 132, 18778-18785.	2.0	6
173	Achieved high energy density and excellent thermal stability in (1â°'x)(Bi0.5Na0.5)0.94Ba0.06TiO3â°'xBi(Mg0.5Ti0.5)O3 relaxor ferroelectric thin films. Journal of Materials Science: Materials in Electronics, 2021, 32, 16269-16278.	2.2	4
174	Tracking Single DNA Nanodevices in Hierarchically Meso-Macroporous Antimony-Doped Tin Oxide Demonstrates Finite Confinement. Langmuir, 2017, 33, 6410-6418.	3.5	3
175	Coordinating corners. Nature Chemistry, 2009, 1, 339-340.	13.6	2
176	Nadrian C. (Ned) Seeman (1945–2021). Nature Nanotechnology, 2022, 17, 108-108.	31.5	2
177	STRUCTURAL DNA NANOTECHNOLOGY: INFORMATION GUIDED SELF-ASSEMBLY. , 2011, , 65-84.		1
178	Titelbild: Single-Particle Tracking and Modulation of Cell Entry Pathways of a Tetrahedral DNA Nanostructure in Live Cells (Angew. Chem. 30/2014). Angewandte Chemie, 2014, 126, 7809-7809.	2.0	1
179	Structural DNA Nanotechnology: Information-Guided Self-Assembly. , O, , 869-880.		0

A synthetic strategy of quantum dot-bioconjugate. , 2010, , .

0