Naohiko Mikami

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11479107/publications.pdf

Version: 2024-02-01

211 papers

9,161 citations

52 h-index 83 g-index

219 all docs

219 docs citations

219 times ranked

3701 citing authors

#	Article	IF	CITATIONS
1	The Large Variation in Acidity of Diethyl Ether Cation Induced by Internal Rotation about a Single Covalent Bond. Journal of Physical Chemistry A, 2015, 119, 4885-4890.	1.1	11
2	Photodetachment Spectroscopy of Fluorenone Radical Anions Microsolvated with Methanol: Rationalizing the Anomalous Solvatochromic Behavior Due to Hydrogen Bonding. Journal of Physical Chemistry A, 2015, 119, 3721-3730.	1.1	2
3	Hyperconjugation in diethyl ether cation versus diethyl sulfide cation. Physical Chemistry Chemical Physics, 2015, 17, 23602-23612.	1.3	3
4	Isomer-selective infrared spectroscopy of the cationic trimethylamine dimer to reveal its charge sharing and enhanced acidity of the methyl groups. Physical Chemistry Chemical Physics, 2014, 16, 9619-9624.	1.3	23
5	Experimental and theoretical investigations of isomerization reactions of ionized acetone and its dimer. Physical Chemistry Chemical Physics, 2012, 14, 712-719.	1.3	17
6	Solvation-Induced σ-Complex Structure Formation in the Gas Phase: A Revisit to the Infrared Spectroscopy of [C ₆ H ₆ –(CH ₃ OH) ₂] ⁺ . Journal of Physical Chemistry A, 2011, 115, 11156-11161.	1.1	7
7	Experimental and theoretical determination of the accurate CH/i€ interaction energies in benzene–alkane clusters: correlation between interaction energy and polarizability. Physical Chemistry Chemical Physics, 2011, 13, 14131.	1.3	52
8	Catalytic Action of a Single Water Molecule in a Protonâ€Migration Reaction. Angewandte Chemie - International Edition, 2010, 49, 4898-4901.	7.2	27
9	Infrared Spectra and Hydrogenâ€Bonded Network Structures of Large Protonated Water Clusters H ⁺ (H ₂ O) _{<i>n</i>/i>} (<i>n</i> =20 â€" 200). Angewandte Chemie - International Edition, 2010, 49, 10119-10122.	7.2	93
10	Infrared and Electronic Spectroscopy of Benzeneâ^'Ammonia Cluster Radical Cations [C ₆ H ₆ (NH ₃) _{1,2}] ⁺ : Observation of Isolated and Microsolvated f-Complexes. Journal of Physical Chemistry A, 2010, 114, 11060-11069.	1.1	19
11	Intermolecular proton-transfer in acetic acid clusters induced by vacuum-ultraviolet photoionization. Journal of Chemical Physics, 2009, 131, 184304.	1.2	22
12	Infrared spectroscopy for acetone and its dimer based on photoionization detection with tunable coherent vacuum-ultraviolet light. Chemical Physics Letters, 2009, 471, 50-53.	1.2	14
13	Interpreting the Physical Background of Empirical Solvent Polarity via Photodetachment Spectroscopy of Microsolvated Aromatic Ketyl Anions. Journal of Physical Chemistry A, 2009, 113, 10593-10602.	1.1	6
14	Predissociation Mechanism and Dynamics of HCP. Journal of Physical Chemistry A, 2009, 113, 13081-13088.	1.1	5
15	Proton Switch Correlated with the Morphological Development of the Hydrogen-Bond Network in $H < \sup + (\sup) (MeOH) < \sup < i \le (i \le n < j < n < j \le n < j < n < j < n < j < n < j < n < j < n < j < n < j < n < j < n < j < n < j < n < j < n < j < n < j < n < j < n < j < n < j < n < j < n < j < n < j < n < j < n < j < n < j < n < j < n < j < n < j < n < j < n < j < n < j < n < j < n < j < n < j < n < j < n < j < n < j < n < j < n < j < n < j < n < j < n < j < n < j < n < j < n < j < n < j < n < j < n < j < n < j < n < j < n < j < n < j < n < j < n < j < n < j < n < j < n < j < n < j < n < j < n < j < n < j < n < j < n < j < n < j < n < j < n < j < n < j < n < j < n < j < n < j < n < j < n < j < n < j < n < j < n < j < n < j < n < j < n < j < n < j < n < j < n < j < n < j < n < j < n < j < n < j < n < j < n < j < n < j < n < j < n < j $	1.1	11
16	Vibrational spectroscopy of size-selected neutral and cationic clusters combined with vacuum-ultraviolet one-photon ionization detection. Physical Chemistry Chemical Physics, 2009, 11, 1279.	1.3	87
17	Observation of an Isolated Intermediate of the Nucleophilic Aromatic Substition Reaction by Infrared Spectroscopy. Angewandte Chemie - International Edition, 2008, 47, 6008-6010.	7.2	20
18	Photoelectron spectroscopy of microsolvated benzophenone radical anions to reveal the origin of solvatochromic shifts in alcoholic media. Chemical Physics Letters, 2008, 457, 18-22.	1.2	9

#	Article	IF	Citations
19	Experimental and theoretical determination of the accurate interaction energies in benzene–halomethane: the unique nature of the activated CH/π interaction of haloalkanes. Physical Chemistry Chemical Physics, 2008, 10, 2836.	1.3	77
20	Infrared predissociation spectroscopy of cluster cations of protic molecules, (NH[sub 3])[sub n]+], n=2–4 and (CH[sub 3]OH)[sub n]+], n=2,3. Journal of Chemical Physics, 2008, 129, 094306.	1.2	34
21	Size-Selected Infrared Predissociation Spectroscopy of Neutral and Cationic Formamideâ^'Water Clusters: Stepwise Growth of Hydrated Structures and Intracluster Hydrogen Transfer Induced by Vacuum-Ultraviolet Photoionization. Journal of Physical Chemistry A, 2008, 112, 6840-6849.	1.1	23
22	Solvent Reorientation Process in the "Twisted―Intramolecular Charge-Transfer Process of CyanophenyldisilaneⰒ(H ₂ O) ₂ Cluster Investigated by Transient Infrared Spectroscopy. Journal of Physical Chemistry A, 2008, 112, 1168-1171.	1.1	7
23	Comprehensive Analysis of the Hydrogen Bond Network Morphology and OH Stretching Vibrations in Protonated Methanolâ-'Water Mixed Clusters, H ⁺ (MeOH) ₁ (H ₂ O) _{<i>n</i>} (<i>n</i> (<i>n</i> Physical Chemistry A. 2008. 112. 10125-10133.	1.1	19
24	Relaxation dynamics of NH stretching vibrations of 2-aminopyridine and its dimer in a supersonic beam. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 12690-12695.	3.3	33
25	Dynamics of hydrogen-bonded OH stretches as revealed by single-mode infrared-ultraviolet laser double resonance spectroscopy on supersonically cooled clusters of phenol. Journal of Chemical Physics, 2008, 129, 154308.	1.2	21
26	Compatibility between methanol and water in the three-dimensional cage formation of large-sized protonated methanol-water mixed clusters. Journal of Chemical Physics, 2007, 126, 194306.	1.2	26
27	Long range influence of an excess proton on the architecture of the hydrogen bond network in large-sized water clusters. Journal of Chemical Physics, 2007, 126, 231101.	1.2	46
28	Stepwise Solvatochromism of Ketyl Anions in the Gas Phase: Photodetachment Excitation Spectroscopy of Benzophenone and Acetophenone Radical Anions Microsolvated with Methanolâ€. Journal of Physical Chemistry A, 2007, 111, 7646-7652.	1.1	8
29	Direct observation of the solvent reorientation dynamics in the "twisted―intramolecular charge-transfer process of cyanophenyldisilane–water cluster by transient infrared spectroscopy. Physical Chemistry Chemical Physics, 2007, 9, 117-126.	1.3	13
30	Theoretical Analyses of the Morphological Development of the Hydrogen Bond Network in Protonated Methanol Clusters. Journal of Physical Chemistry A, 2007, 111, 9438-9445.	1.1	27
31	Magnitude and Nature of Interactions in Benzeneâ^'X (X = Ethylene and Acetylene) in the Gas Phase: Significantly Different CH/Ï€ Interaction of Acetylene As Compared with Those of Ethylene and Methane. Journal of Physical Chemistry A, 2007, 111, 753-758.	1.1	110
32	Stimulated Raman spectroscopy combined with vacuum ultraviolet photoionization: Application to jet-cooled methanol clusters as a new vibrational spectroscopic method for size-selected species in the gas phase. Chemical Physics Letters, 2007, 442, 217-219.	1.2	9
33	Origin of the Attraction in Aliphatic Câ^'H/l∈ Interactions:Â Infrared Spectroscopic and Theoretical Characterization of Gas-Phase Clusters of Aromatics with Methane. Journal of Physical Chemistry A, 2006, 110, 10583-10590.	1.1	99
34	Electron localization in negatively charged formamide clusters studied by photodetachment spectroscopy. Physical Chemistry Chemical Physics, 2006, 8, 827-833.	1.3	17
35	Magnitude of the CH/Ï€ Interaction in the Gas Phase:Â Experimental and Theoretical Determination of the Accurate Interaction Energy in Benzene-methane. Journal of Physical Chemistry A, 2006, 110, 4397-4404.	1.1	139
36	Infrared Vibrational Autodetachment Spectroscopy of Microsolvated Benzonitrile Radical Anions. Journal of Physical Chemistry A, 2006, 110, 13712-13716.	1.1	10

#	Article	IF	CITATIONS
37	Picosecond IRâ^'UV Pumpâ^'Probe Study on the Vibrational Relaxation of Phenolâ^'Ethylene Hydrogen-Bonded Cluster:Â Difference of Relaxation Route/Rate between the Donor and the Acceptor Site Excitations. Journal of Physical Chemistry A, 2006, 110, 6250-6255.	1.1	14
38	Infrared spectroscopy of size-selected neutral clusters combined with vacuum-ultraviolet-photoionization mass spectrometry. Chemical Physics Letters, 2006, 422, 378-381.	1.2	41
39	Picosecond time-resolved study on the intramolecular vibrational energy redistribution of NH stretching vibration of jet-cooled aniline and its isotopomer. Chemical Physics Letters, 2006, 432, 421-425.	1.2	13
40	Infrared and Electronic Spectroscopy of a Model System for the Nucleophilic Substitution Intermediate in the Gas Phase:  The Câ^'N Valence Bond Formation in the Benzeneâ^'Ammonia Cluster Cation. Journal of Physical Chemistry A, 2006, 110, 6387-6390.	1.1	18
41	Complete infrared spectroscopic characterization of phenol-borane-trimethylamine dihydrogen-bonded complex in the gas phase. Journal of Chemical Physics, 2006, 124, 241103.	1.2	20
42	IR laser manipulation of cis↔trans isomerization of 2-naphthol and its hydrogen-bonded clusters. Journal of Chemical Physics, 2006, 124, 054315.	1.2	12
43	Infrared predissociation spectroscopy of ammonia cluster cations (NH3)n+ (n=2–4) produced by vacuum-ultraviolet photoionization. Journal of Chemical Physics, 2006, 125, 164320.	1.2	15
44	Determination of the Equilibrium Structure of the Charge-transfer State of (p-Cyanophenyl)pentamethyldisilane by Means of Transient Infrared Spectroscopy. Journal of Physical Chemistry A, 2005, 109, 8959-8961.	1.1	11
45	Electronic and Infrared Spectroscopy of [Benzeneâ^'(Methanol)n]+(n= 1â^'6). Journal of Physical Chemistry A, 2005, 109, 9471-9480.	1.1	13
46	Picosecond IR-UV pump-probe spectroscopic study on the intramolecular vibrational energy redistribution of NH2 and CH stretching vibrations of jet-cooled aniline. Journal of Chemical Physics, 2005, 123, 124316.	1.2	29
47	Morphology of Protonated Methanol Clusters:  An Infrared Spectroscopic Study of Hydrogen Bond Networks of H+(CH3OH)n (n = 4â^'15). Journal of Physical Chemistry A, 2005, 109, 138-141.	1.1	51
48	First observation of a dihydrogen bond involving the Si–H group in phenol-diethylmethylsilane clusters by infrared-ultraviolet double-resonance spectroscopy. Journal of Chemical Physics, 2005, 123, 224309.	1.2	19
49	Laser Spectroscopic Investigation of Salicylic Acids Hydrogen Bonded with Water in Supersonic Jets:Â Microsolvation Effects for Excited State Proton Dislocation. Journal of Physical Chemistry A, 2005, 109, 2498-2504.	1.1	25
50	First observation of the $B\hat{I}fAl1$ state of SiH2 and SiD2 radicals by optical-optical double resonance spectroscopy. Journal of Chemical Physics, 2005, 122, 154302.	1.2	10
51	Infrared Spectroscopic Evidence for Protonated Water Clusters Forming Nanoscale Cages ChemInform, 2004, 35, no.	0.1	3
52	Electronic spectroscopy of benzene–water cluster cations, [C6H6–(H2O)n]+ (n=1–4): spectroscopic evidence for phenyl radical formation through size-dependent intracluster proton transfer reactions. Chemical Physics Letters, 2004, 399, 412-416.	1.2	35
53	Characteristic distributions of negatively charged N-monosubstituted amide clusters generated by electron attachment in supersonic expansions. Physical Chemistry Chemical Physics, 2004, 6, 2725.	1.3	8
54	Infrared Spectroscopic Evidence for Protonated Water Clusters Forming Nanoscale Cages. Science, 2004, 304, 1134-1137.	6.0	493

#	Article	IF	Citations
55	Real-time detection of doorway states in the intramolecular vibrational energy redistribution of the OH/OD stretch vibration of phenol. Journal of Chemical Physics, 2004, 121, 11530-11534.	1.2	38
56	Infrared Spectroscopy of Size-Selected Benzeneâ^'Water Cluster Cations [C6H6â^'(H2O)n]+ (n = 1â^'23): Hydrogen Bond Network Evolution and Microscopic Hydrophobicity. Journal of Physical Chemistry A, 2004, 108, 10656-10660.	1.1	55
57	A Molecular Cluster Study on Activated CH/Ï€ Interactions:Â Infrared Spectroscopy of Aromatic Moleculeâ°Acetylene Clusters. Journal of Physical Chemistry A, 2004, 108, 2652-2658.	1.1	67
58	Binding Energy of the Benzeneâ^'Water Cluster Cation:Â An Ar-Mediated IR Photodissociation Study. Journal of Physical Chemistry A, 2004, 108, 8269-8272.	1.1	35
59	Picosecond IR–UV pump–probe spectroscopic study of the dynamics of the vibrational relaxation of jet-cooled phenol. II. Intracluster vibrational energy redistribution of the OH stretching vibration of hydrogen-bonded clusters. Journal of Chemical Physics, 2004, 120, 7410-7417.	1.2	43
60	Picosecond IR–UV pump–probe spectroscopic study of the dynamics of the vibrational relaxation of jet-cooled phenol. I. Intramolecular vibrational energy redistribution of the OH and CH stretching vibrations of bare phenol. Journal of Chemical Physics, 2004, 120, 7400-7409.	1.2	48
61	First observation of ionic π-hydrogen bonds; vibrational spectroscopy of dihydrated naphthalene anion (Nphâ^'(H2O)2). Chemical Physics Letters, 2003, 370, 535-541.	1.2	16
62	Substitution effects on the excited-state intramolecular proton transfer of salicylic acid: an infrared spectroscopic study on the OH stretching vibrations of jet-cooled 5-methoxysalicylic acid. Chemical Physics Letters, 2003, 376, 788-793.	1.2	22
63	Spectroscopic Investigation on the Microscopic Solvation Effect on the Intramolecular Charge-Transfer Process of (p-Cyanophenyl)pentamethyldisilane in Supersonic Jetsâ€. Journal of Physical Chemistry A, 2003, 107, 10781-10786.	1.1	9
64	NH Stretching Vibrations of Jet-Cooled Aniline and Its Derivatives in the Neutral and Cationic Ground States. Journal of Physical Chemistry A, 2003, 107, 3678-3686.	1.1	48
65	Infrared spectroscopy of hydrated benzene cluster cations, [C6H6-(H2O)n]+ (n = 1–6): Structural changes upon photoionization and proton transfer reactions. Physical Chemistry Chemical Physics, 2003, 5, 1137-1148.	1.3	79
66	IR induced cisâ†"trans isomerization of 2-naphthol: Catalytic role of hydrogen-bond in the photoinduced isomerization. Journal of Chemical Physics, 2003, 119, 2947-2950.	1.2	15
67	Dihydrogen bonded phenol–borane-dimethylamine complex: An experimental and theoretical study. Journal of Chemical Physics, 2002, 116, 6056-6063.	1.2	31
68	Intramolecular Charge-Transfer Process of Jet-Cooled (p-Cyanophenyl)pentamethyldisilane:Â Roles of the Torsional Motion and the Siâ^'Si Bond Change. Journal of the American Chemical Society, 2002, 124, 6220-6230.	6.6	22
69	An Infrared Study of Ï€-Hydrogen Bonds in Micro-solvated Phenol: OH Stretching Vibrations of Phenolâ^'X (X = C6H6, C2H4, and C2H2) Clusters in the Neutral and Cationic Ground States. Journal of Physical Chemistry A, 2002, 106, 8554-8560.	1.1	76
70	Structure and Photoinduced Excited State Ketoâ^'Enol Tautomerization of 7-Hydroxyquinoline-(CH3OH)nClusters. Journal of Physical Chemistry A, 2002, 106, 5591-5599.	1.1	64
71	A New Electronic State of Aniline Observed in the Transient IR Absorption Spectrum from S1in a Supersonic Jet. Journal of Physical Chemistry A, 2002, 106, 11070-11074.	1.1	57
72	Câ€"H stretching vibrations of benzene and toluene in their S1 states observed by double resonance vibrational spectroscopy in supersonic jets. Physical Chemistry Chemical Physics, 2002, 4, 1537-1541.	1.3	34

#	Article	IF	CITATIONS
73	Direct Observation of Weak Hydrogen Bonds in Microsolvated Phenol: Infrared Spectroscopy of OH Stretching Vibrations of Phenolâ [°] CO and â [°] CO2 in SO and DO. Journal of Physical Chemistry A, 2002, 106, 10124-10129.	1.1	47
74	Stimulated Emission Pumping Spectroscopy of SiH2: First Observation of the Spinâ \in Orbit Interaction between the XÌ f 1A1 and the ã3B1 States. Journal of Molecular Spectroscopy, 2002, 216, 90-97.	0.4	12
75	Vibrational spectroscopic evidence of unconventional hydrogen bonds. International Journal of Mass Spectrometry, 2002, 220, 289-312.	0.7	51
76	Gas phase dihydrogen bonding: clusters of borane-amines with phenol and aniline. Chemical Physics, 2002, 283, 193-207.	0.9	34
77	Rotational analysis of jet-cooled phenylpentamethyldisilane: vibronic interaction with the intramolecular charge-transfer state. Chemical Physics, 2002, 283, 379-388.	0.9	4
78	Fluorescence enhancement detected IR (FEDIR) spectroscopy: a new background free IR spectroscopic technique for highly fluorescent molecules. Chemical Physics Letters, 2002, 361, 453-456.	1.2	5
79	Picosecond IRâ^'UV Pumpâ^'Probe Spectroscopy. IVR of OH Stretching Vibration of Phenol and Phenol Dimer. Journal of Physical Chemistry A, 2001, 105, 8623-8628.	1.1	63
80	Dehydrogenation Reaction from a Dihydrogen Bonded Precursor Complex in the Gas Phase. Journal of Physical Chemistry A, 2001, 105, 10753-10758.	1.1	20
81	Photofragment-Detected IR Spectroscopy (PFDIRS) for the OH Stretching Vibration of the Hydrogen-Bonded Clusters in the S1StateApplication to 2-Naphthol-B (B = H2O and CH3OH) Clusters. Journal of Physical Chemistry A, 2001, 105, 5727-5730.	1.1	27
82	Infrared Spectroscopy of the OH Stretching Vibrations of Jet-Cooled Salicylic Acid and Its Dimer in SO and S1. Journal of Physical Chemistry A, 2001, 105, 10673-10680.	1.1	59
83	Infrared Photodissociation Spectroscopy of n-Propylbenzeneâ^'Ar Cluster Cations:  Charge Delocalization between the Aromatic Ring and the Alkyl Chain. Journal of Physical Chemistry A, 2001, 105, 4882-4886.	1.1	9
84	IRâ~'UV Double-Resonance Spectroscopic Study of 2-Hydroxypyridine and Its Hydrogen-Bonded Clusters in Supersonic Jets. Journal of Physical Chemistry A, 2001, 105, 3475-3480.	1.1	51
85	Electronic and Vibrational Spectroscopy of Dihydrogen Bonded 2-Pyridoneâ^'Boraneâ^'Trimethylamine Complex in Supersonic Jets. Journal of Physical Chemistry A, 2001, 105, 8642-8645.	1.1	19
86	OH stretching vibrations and hydrogen-bonded structures of 7-hydroxyquinoline-(H2O)1–3 investigated by IR–UV double-resonance spectroscopy. Chemical Physics Letters, 2001, 338, 52-60.	1.2	19
87	Infrared spectroscopy of the benzene–H2O cluster cation: experimental study on the drastic structural change upon photoionization. Chemical Physics Letters, 2001, 349, 431-436.	1.2	63
88	Mode dependent intracluster vibrational energy redistribution rate in size-selected benzonitrile–(CHCl3)n=1–3 clusters. Journal of Chemical Physics, 2001, 114, 7866-7876.	1.2	15
89	Predissociation of Rydberg states of CO investigated by the detection of atomic fragments. Journal of Chemical Physics, 2001, 114, 7886-7900.	1.2	14
90	Gas phase dihydrogen bonded phenol–borane–trimethylamine complex. Journal of Chemical Physics, 2001, 114, 8877-8879.	1.2	33

#	Article	IF	CITATIONS
91	Autoionization-Detected Infrared Spectroscopy of Jet-Cooled Naphthol Cations. Journal of Physical Chemistry A, 2000, 104, 7227-7232.	1.1	20
92	Vibrational spectra and relaxation of benzonitrile and its clusters using time-resolved stimulated Raman-UV double resonance spectroscopy. Journal of Raman Spectroscopy, 2000, 31, 295-304.	1.2	18
93	Autoionization-detected infrared (ADIR) spectroscopy of molecular cations. Journal of Electron Spectroscopy and Related Phenomena, 2000, 108, 21-30.	0.8	10
94	Vibrationally autoionizing Rydberg clusters: Spectroscopy and dynamics of pyrazine–Ar and –Xe clusters. Journal of Chemical Physics, 2000, 113, 8000-8008.	1.2	7
95	Infrared spectroscopy of CH stretching vibrations of jet-cooled alkylbenzene cations by using the "messenger―technique. Journal of Chemical Physics, 2000, 112, 6275-6284.	1.2	68
96	Population labeling spectroscopy for the electronic and the vibrational transitions of 2-pyridone and its hydrogen-bonded clusters. Journal of Chemical Physics, 2000, 113, 573-580.	1.2	74
97	Evidence of a dihydrogen bond in gas phase: Phenol–borane-dimethylamine complex. Journal of Chemical Physics, 2000, 113, 9885-9888.	1.2	45
98	Autoionization-detected infrared spectroscopy of intramolecular hydrogen bonds in aromatic cations. II. Unconventional intramolecular hydrogen bonds. Journal of Chemical Physics, 2000, 112, 137-148.	1.2	31
99	Vibrational Spectroscopy for Size-Selected Fluoreneâ^'(H2O)n=1,2Clusters in Supersonic Jets. Journal of Physical Chemistry A, 2000, 104, 11891-11896.	1.1	13
100	Vibrational Relaxation of OH and OD Stretching Vibrations of Phenol and Its Clusters Studied by IRâ°'UV Pumpâ°'Probe Spectroscopy. Journal of Physical Chemistry A, 2000, 104, 7974-7979.	1.1	50
101	Structures of hydrogen-bonded clusters of benzyl alcohol with water investigated by infrared-ultraviolet double resonance spectroscopy in supersonic jet. Journal of Chemical Physics, 1999, 111, 8438-8447.	1.2	53
102	Infrared spectroscopy of the phenol-N2 cluster in SO and DO: Direct evidence of the in-plane structure of the cluster. Journal of Chemical Physics, 1999, 110, 11125-11128.	1.2	61
103	Vibrational spectroscopy of 2-pyridone and its clusters in supersonic jets: Structures of the clusters as revealed by characteristic shifts of the NH and C=O bands. Journal of Chemical Physics, 1999, 110, 8397-8407.	1.2	150
104	Structures and the vibrational relaxations of size-selected benzonitrile $\hat{a} \in \text{``(H2O)} n=1 \hat{a} \in \text{``(H2O)} n=1 \hat{a} \in \text{``(CH3OH)} n=1 \hat{a} \in \text{``(SH3OH)} n=1 \hat{a} \in \text{``(CH3OH)} n=1 \hat{a} \in $	1.2	73
105	Autoionization-detected infrared spectroscopy of jet-cooled aromatic cations in the gas phase: CH stretching vibrations of isolated p-ethylphenol cations. Chemical Physics Letters, 1999, 303, 289-294.	1.2	23
106	Observation of the νCHExcited Vibrational Levels in theÃ1A″State of HCP by IR–UV Double Resonance Spectroscopy. Journal of Molecular Spectroscopy, 1999, 194, 52-60.	0.4	9
107	Autoionization-detected infrared spectroscopy of intramolecular hydrogen bonds in aromatic cations. I. Principle and application to fluorophenol and methoxyphenol. Journal of Chemical Physics, 1999, 110, 4238-4247.	1.2	69
108	Discrimination of Rotamers of Aryl Alcohol Homologues by Infraredâ^'Ultraviolet Double-Resonance Spectroscopy in a Supersonic Jet. Journal of the American Chemical Society, 1999, 121, 5705-5711.	6.6	68

#	Article	IF	Citations
109	Intracluster Ionâ^'Molecule Reactions of Dimer Cations of Phenylsilanes. Journal of Physical Chemistry A, 1999, 103, 2007-2012.	1.1	5
110	Observation of the Highly Excited Vibrational Levels of HCP: Application of IR-UV-SEP Triple Resonance Spectroscopy. Chemistry Letters, 1999, 28, 941-942.	0.7	3
111	Mode-dependent anharmonic coupling between OH stretching and intermolecular vibrations of the hydrogen-bonded clusters of phenol. Chemical Physics, 1998, 231, 199-204.	0.9	16
112	Vibrational spectroscopy of small-sized hydrogen-bonded clusters and their ions. International Reviews in Physical Chemistry, 1998, 17, 331-361.	0.9	361
113	Infrared Spectroscopy of Intramolecular Hydrogen-Bonded OH Stretching Vibrations in Jet-Cooled Methyl Salicylate and Its Clusters. Journal of Physical Chemistry A, 1998, 102, 9779-9784.	1.1	40
114	A New Type of Intramolecular Hydrogen Bonding:Â Hydroxylâ^'Methyl Interactions in theo-Cresol Cation. Journal of the American Chemical Society, 1998, 120, 13256-13257.	6.6	30
115	Discrimination of s-cis/s-trans conformers of jet-cooled methyl cinnamate by population labelling spectroscopy. Research on Chemical Intermediates, 1998, 24, 803-812.	1.3	6
116	Characterizations of the hydrogen-bond structures of 2-naphthol-(H2O)n (n=0–3 and 5) clusters by infrared-ultraviolet double-resonance spectroscopy. Journal of Chemical Physics, 1998, 109, 6303-6311.	1.2	75
117	Predissociation of the Rydberg states of CO: State specific predissociation to the triplet channel. Journal of Chemical Physics, 1998, 108, 1765-1768.	1.2	16
118	Photodestruction spectroscopy of carbon disulfide cluster anions (CS2)nâ^, n=1â€"4: Evidence for the dimer core structure and competitive reactions of the dimer anion. Journal of Chemical Physics, 1998, 108, 1368-1376.	1.2	39
119	Spectroscopic investigation of the generation of "isomerization―states: Eigenvector analysis of the bend-CP stretch polyad. Journal of Chemical Physics, 1998, 109, 492-503.	1.2	37
120	Microscopic Solvation Effects on Si-Si Bond Cleavage Reactions of Cluster Cation Radicals of (p-Cyanophenyl)pentamethyldisilane with Hydroxylic Molecules. Chemistry Letters, 1998, 27, 415-416.	0.7	0
121	Observation of the "isomerization states'' of HCP by stimulated emission pumping spectroscopy: Comparison between theory and experiment. Journal of Chemical Physics, 1997, 106, 2980-2983.	1.2	34
122	Degenerate four-wave mixing and photofragment yield spectroscopic study of jet-cooled SO2 in the $Clfa \in \%1B2$ state: Internal conversion followed by dissociation in the Xlf state. Journal of Chemical Physics, 1997, 107, 8752-8758.	1.2	46
123	lonization detected vibrational spectroscopy of size-selected hydrogen-bonding clusters of phenol. , 1997, , .		0
124	Observation of Intramolecular Hydrogen Bonds ofo-Fluorophenol Ions by Using Autoionization Detected Infrared Spectroscopy. Chemistry Letters, 1997, 26, 1099-1100.	0.7	15
125	Intracluster Ionâ^Molecule Reactions of Phenylsilane Dimer Cation following the Charge Resonance Band Excitation. Journal of Physical Chemistry A, 1997, 101, 9257-9259.	1.1	2
126	Autoionization-Detected Infrared Spectroscopy of Molecular Ions. Journal of Physical Chemistry A, 1997, 101, 5963-5965.	1.1	59

#	Article	IF	CITATIONS
127	First Observation of Intramolecular Charge-Transfer Emission from Jet-Cooled (p-Cyanophenyl)pentamethyldisilane in an Isolated Molecular Condition. Journal of the American Chemical Society, 1997, 119, 7400-7401.	6.6	30
128	Infrared Spectroscopy of (Phenol)n+(n= 2â^'4) and (Phenolâ^'Benzene)+Cluster Ions. Journal of Physical Chemistry A, 1997, 101, 1798-1803.	1.1	24
129	Photodetachment of small water cluster anions in the near-infrared through the visible region. Chemical Physics Letters, 1997, 264, 292-296.	1.2	36
130	Characterization of the Hydrogen-Bonded Cluster Ions [Phenolâ^'(H2O)n]+(n= 1â^'4), (Phenol)2+, and (Phenolâ^'Methanol)+As Studied by Trapped Ion Infrared Multiphoton Dissociation Spectroscopy of Their OH Stretching Vibrations. The Journal of Physical Chemistry, 1996, 100, 8131-8138.	2.9	88
131	Sizeâ€selected vibrational spectra of phenolâ€(H2O)n (n=1–4) clusters observed by IR–UV double resonance and stimulated Ramanâ€UV double resonance spectroscopies. Journal of Chemical Physics, 1996, 105, 408-419.	1.2	262
132	Infrared spectroscopy of precursor clusters for nucleophilic substitution reactions: fluorobenzene-(CH3OH)n (n = 1 and 2). Chemical Physics Letters, 1996 , 256 , $1-7$.	1.2	24
133	Structures of size-selected hydrogen-bonded phenol-(H2O)n clusters in S0, S1 and ion. International Journal of Mass Spectrometry and Ion Processes, 1996, 159, 111-124.	1.9	63
134	Infrared Spectroscopy of Hydrogen-Bonded Phenolâ^'Amine Clusters in Supersonic Jets. The Journal of Physical Chemistry, 1996, 100, 16053-16057.	2.9	147
135	Infrared spectroscopy of OH stretching vibrations of hydrogenâ€bonded tropoloneâ€(H2O)n (n=1–3) and tropoloneâ€(CH3OH)n (n=1 and 2) clusters. Journal of Chemical Physics, 1996, 105, 2618-2627.	1.2	72
136	OH Stretching Vibrations of Phenolâ^'(H2O)1and Phenolâ^'(H2O)3in the S1State. The Journal of Physical Chemistry, 1996, 100, 546-550.	2.9	131
137	Size Dependence of Intracluster Proton Transfer of Phenolâ´'($H2O$)n (n = $1a^4$) Cations. The Journal of Physical Chemistry, 1996, 100, 4765-4769.	2.9	49
138	Hole-Burning and Stimulated Ramanâ [*] UV Double Resonance Spectroscopies of Jet-Cooled Toluene Dimer. The Journal of Physical Chemistry, 1996, 100, 10531-10535.	2.9	39
139	Spectroscopic Study of Intracluster Proton Transfer in Small Size Hydrogen-Bonding Clusters of Phenol. Bulletin of the Chemical Society of Japan, 1995, 68, 683-695.	2.0	73
140	Predissociation of Rydberg states of CO investigated by the detection of theC(3PJ) fragment. Chemical Physics Letters, 1995, 240, 357-361.	1.2	10
141	Rotational structure and dissociation of the Rydberg states of CO investigated by ionâ€dip spectroscopy. Journal of Chemical Physics, 1995, 103, 2420-2435.	1.2	30
142	Evidence for the Cyclic Form of Phenol Trimer: Vibrational Spectroscopy of the OH Stretching Vibrations of Jet-Cooled Phenol Dimer and Trimer. The Journal of Physical Chemistry, 1995, 99, 5761-5764.	2.9	119
143	Infrared dissociation spectroscopy of the OH stretching vibration of phenol—rare gas van der Waals cluster ions. Chemical Physics Letters, 1994, 225, 104-107.	1.2	77
144	Electronic spectra of jet-cooled cations of hydrogen-bonded complexes of phenol. Spectrochimica Acta Part A: Molecular Spectroscopy, 1994, 50, 1413-1419.	0.1	22

#	Article	IF	Citations
145	Trapped ion photodissociation spectroscopy. Photodissociation of p-dichlorobenzene cation. Chemical Physics Letters, 1993, 209, 379-382.	1.2	9
146	OH stretching vibrations of phenolâ€"(H2O)n (n=1â€"3) complexes observed by IR-UV double-resonance spectroscopy. Chemical Physics Letters, 1993, 215, 347-352.	1.2	309
147	Stable forms of the phenol-complex cations as revealed by trapped ion photodissociation spectroscopy. Chemical Physics Letters, 1993, 202, 431-436.	1.2	44
148	Rotational analysis of n=4–7 Rydberg states of CO observed by ionâ€dip spectroscopy. Journal of Chemical Physics, 1993, 99, 9350-9365.	1.2	23
149	Confinement and Low-Energy Extraction of Photo-Fragment Ions Using Rf Ion Trapping. Materials Research Society Symposia Proceedings, 1993, 334, 451.	0.1	0
150	Chemistry of organosilicon compounds. 277. Conformational analysis of phenylpentamethyldisilane and related compounds as studied by free-jet laser spectroscopy. Organometallics, 1991, 10, 3793-3795.	1.1	26
151	Intracluster ion molecule reactions within the photoionized van der Waals complexes of fluorobenzene with ammonia and with water. The Journal of Physical Chemistry, 1991, 95, 7197-7204.	2.9	36
152	Trapped ion photodissociation spectroscopy: the electronic spectrum of the hydrogen-bonded complex cation [C6H5OHî—,N(CH3)3]+. Chemical Physics Letters, 1991, 180, 431-435.	1.2	27
153	Nucleophilic substitution within the photoionized van der Waals complex chlorobenzene-ammonia. The Journal of Physical Chemistry, 1990, 94, 6973-6977.	2.9	27
154	Ion trap method combined with two-color laser spectroscopy of supersonic molecular beams: Photodissociation of trapped C6H5Cl+. Chemical Physics Letters, 1990, 166, 470-474.	1.2	21
155	Photodissociation of jet-cooled acetylacetonato complexes of the first transition metals. Free metal generation and fragmentational ionization. Chemical Physics, 1990, 141, 431-440.	0.9	11
156	Two-color multiphoton dissociation/ionization of jet-cooled CrIII(acac)3 and CrO(CO)6. Appearance energies of Cr atom. Chemical Physics, 1988, 127, 161-171.	0.9	12
157	Nucleophilic substitution within the photoionized van der Waals complex: generation of C6H5NH3+ from C6H5Cl-NH3. Journal of the American Chemical Society, 1988, 110, 7238-7239.	6.6	29
158	Photodissociation of the hydrogen-bonded [phenol-ammonia]+ heterodimer ion. The Journal of Physical Chemistry, 1988, 92, 1858-1862.	2.9	53
159	Mass-selected two-color multiphoton ionization of the hydrogen-bonded complex phenol-trimethylamine: generation of the protonated ion trimethylammonium($1+$). The Journal of Physical Chemistry, 1987, 91, 5242-5247.	2.9	24
160	Internal Rotation of the Methyl Group in the Electronically Excited State: o- and m-Toluidine. Laser Chemistry, 1987, 7, 197-212.	0.5	61
161	n,.pi.* State of jet-cooled benzophenone as studied by sensitized phosphorescence excitation spectroscopy. The Journal of Physical Chemistry, 1986, 90, 5615-5619.	2.9	34
162	Rotationally resolved fluorescence excitation spectra of jet-cooled pyrimidine and pyrimidine-argon van der Waals complex. The Journal of Physical Chemistry, 1986, 90, 5619-5622.	2.9	16

#	Article	IF	Citations
163	Intersystem crossing in jet-cooled naphthalene, \hat{l}_{\pm} - and \hat{l}_{\pm} -chloronaphthalene as studied by sensitized phosphorescence excitation spectroscopy. Chemical Physics Letters, 1986, 127, 292-296.	1.2	31
164	Two-color multiphoton ionization spectra of jet-cooled p-difluorobenzene - s and d Rydberg states. Chemical Physics Letters, 1986, 127, 297-302.	1.2	22
165	Selective complexation of rotational isomers of p-dimethoxybenzene as studied by electronic spectra in a supersonic jet. Chemical Physics Letters, 1986, 125, 1-4.	1.2	27
166	Electronic spectra of uracil in a supersonic jet. Chemical Physics Letters, 1986, 126, 583-587.	1.2	85
167	Sensitized phosphorescence excitation spectra of complexes of glyoxal, pyrazine, and phenol. Great enhancement of phosphorescence yield by complexation. The Journal of Physical Chemistry, 1986, 90, 2370-2374.	2.9	27
168	Vibrational predissociation and nonradiative process of electronically excited van der Waals complexes of pyrimidine. The Journal of Physical Chemistry, 1985, 89, 3512-3521.	2.9	40
169	Sensitized phosphorescence excitation spectra of benzoic acid monomer and methyl benzoate and their complexes in supersonic jets. The Journal of Physical Chemistry, 1985, 89, 3636-3641.	2.9	37
170	Two-color multiphoton ionization and fluorescence dip spectra of NO in a supersonic free jet. Highly excited ns, np, nf Rydberg states. Chemical Physics, 1985, 97, 153-163.	0.9	52
171	Rydberg states (n = $4\hat{a}$ \in "29) of azabicyclo [2.2.2] octane as studied by two-color fluorescence DIP and multiphoton ionization spectroscopies. Chemical Physics, 1985, 99, 193-206.	0.9	24
172	Electronic spectra and ionization potentials of rotational isomers of several disubstituted benzenes. Chemical Physics Letters, 1985, 116, 50-54.	1.2	90
173	Higher singlet and triplet n,Ï€* states of glyoxal vapor. Chemical Physics Letters, 1985, 119, 17-21.	1.2	6
174	lon dips in two-color photoionization spectra of jet-cooled trans-stilbene stimulated transitions to ground-state vibrational levels. Chemical Physics Letters, 1985, 120, 333-336.	1.2	18
175	Two-color photoionization of van der Waals complexes of fluorobenzene and hydrogen-bonded complexes of phenol in supersonic jets. The Journal of Physical Chemistry, 1985, 89, 3642-3648.	2.9	138
176	Rotational isomers of meta-substituted phenols and .betanaphthol studied by electronic spectra in supersonic free jets. The Journal of Physical Chemistry, 1984, 88, 5180-5186.	2.9	106
177	Rotational energy transfer in NO (A2Σ+, ν = 0 and 1) studied by two-color double-resonance spectroscopy. Chemical Physics, 1984, 84, 151-157.	0.9	41
178	Excitation and dispersed fluorescence spectra of the 1B2(V)-1Σg+(XÌ,,) transition of jet-cooled CS2. Chemical Physics, 1984, 86, 173-188.	0.9	27
179	Two-color excitation of NO in a supersonic free jet. Autoionization of high rydberg states. Chemical Physics, 1984, 89, 103-109.	0.9	43
180	Two-color photoionization of van der waals complexes of fluorobenzene in a supersonic free jet. Chemical Physics Letters, 1984, 107, 22-26.	1.2	26

#	Article	lF	Citations
181	Intramolecular electronic energy transfer of bichromophoric molecules in a supersonic free jet. Chemical Physics Letters, 1984, 110, 597-601.	1.2	30
182	Sensitized phosphorescence excitation spectra of biacetyl, benzaldehyde and benzophenone in supersonic jets. Chemical Physics Letters, 1984, 109, 217-220.	1.2	54
183	Two-color multiphoton ionization and fluorescence dip spectra of diazabicyclo[2.2.2]octane in a supersonic free jet. Rydberg states (n = 5-39) and autoionization. The Journal of Physical Chemistry, 1984, 88, 4265-4271.	2.9	37
184	Fluorescence excitation spectra of weakly bound complexes of benzene in a supersonic free jet. Chemical Physics Letters, 1983, 94, 549-552.	1.2	32
185	Two-color multiphoton ionization of diazabicyclooctane in a supersonic free jet. Chemical Physics Letters, 1983, 101, 578-582.	1.2	33
186	Electronic spectra of jet-cooled azulene. Chemical Physics, 1983, 77, 191-200.	0.9	63
187	Solvated phenol studied by supersonic jet spectroscopy. The Journal of Physical Chemistry, 1983, 87, 5083-5090.	2.9	86
188	Highly excited states of nitric oxide studied by twoâ€color double resonance spectroscopy. Journal of Chemical Physics, 1983, 78, 1132-1139.	1.2	57
189	Electronic spectra of tropolone in a supersonic free jet. Proton tunneling in the S1 state. The Journal of Physical Chemistry, 1983, 87, 4401-4405.	2.9	132
190	Spectroscopy and dynamics of fluorobenzene-carbon tetrachloride complex in a supersonic free jet. The Journal of Physical Chemistry, 1983, 87, 4406-4411.	2.9	14
191	Dispersed fluorescence spectra of hydrogen-bonded phenols in a supersonic free jet. The Journal of Physical Chemistry, 1982, 86, 2567-2569.	2.9	53
192	Dual Fluorescence of Pyrazine Cooled in a Supersonic Free Jet. Bulletin of the Chemical Society of Japan, 1982, 55, 374-379.	2.0	9
193	One-photon and Two-photon Electronic Spectra of Two Caged Amines. Bulletin of the Chemical Society of Japan, 1982, 55, 2796-2802.	2.0	27
194	Fluorescence excitation spectra of hydrogen-bonded phenols in a supersonic free jet. The Journal of Physical Chemistry, 1982, 86, 1768-1771.	2.9	134
195	Double resonance effect on multiphoton ionization process of nitric oxide. Chemical Physics Letters, 1982, 86, 445-448.	1.2	28
196	Two-color double resonance in the four-photon ionization of nitric oxide. Chemical Physics Letters, 1982, 89, 45-47.	1.2	23
197	Vibrational energy redistribution in jet-cooled hydrogen-bonded phenols. Chemical Physics Letters, 1982, 93, 217-220.	1.2	29
198	SVL fluorescence spectra from the 1B2 state of CS2 cooled in a supersonic free jet. Chemical Physics Letters, 1981, 83, 488-492.	1.2	3

#	Article	IF	CITATIONS
199	The fluorescence excitation spectrum of aniline in a supersonic free jet: Double minimum potential for the inversion vibration in the excited state. Chemical Physics Letters, 1980, 74, 531-535.	1.2	113
200	Multiphoton Spectroscopy. Applied Spectroscopy Reviews, 1980, 16, 299-352.	3.4	16
201	Dynamics of radiationless processes studied in pulsed supersonic free jets: Some naphthalene lifetimes. Chemical Physics Letters, 1979, 60, 364-367.	1.2	65
202	Polarized Two-photon Absorption Spectra of Naphthalene in Durene Single Crystal with Two Synchronized Tunable Dye Lasers. Bulletin of the Chemical Society of Japan, 1979, 52, 3484-3495.	2.0	6
203	The Two-Photon Excitation Spectrum of Phenanthrene Crystal. Bulletin of the Chemical Society of Japan, 1977, 50, 2899-2901.	2.0	12
204	Two-photon excitation spectra of naphthalene-h8 and -d8: Vibronic coupling involving the ground state. Chemical Physics, 1977, 23, 141-152.	0.9	52
205	Vibronic coupling involving the ground states of benzene and naphthalene. Journal of Chemical Physics, 1976, 64, 3077-3078.	1.2	40
206	Two-photon excitation spectra of naphthalene and naphthalene-d8. Chemical Physics Letters, 1975, 31, 472-478.	1.2	71
207	Electronic spectra and vibronic coupling of pyrazine. Journal of Molecular Spectroscopy, 1974, 52, 21-37.	0.4	69
208	The Polarized Phosphorescence Spectra of Phenazine in a Phenanthrene Crystal. Bulletin of the Chemical Society of Japan, 1973, 46, 1076-1080.	2.0	2
209	The Resonance Raman Effect of Azobenzene andp-Aminoazobenzene. Bulletin of the Chemical Society of Japan, 1972, 45, 3542-3543.	2.0	31
210	Polarized Absorption Spectrum of the Second Sâ†'T Transition of Phenazine Crystals. Bulletin of the Chemical Society of Japan, 1972, 45, 992-996.	2.0	4
211	Polarized absorption spectrum of phenazine crystal. Journal of Molecular Spectroscopy, 1971, 37, 147-158.	0.4	16