Kira M Holmström

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11477254/publications.pdf

Version: 2024-02-01

516710 940533 6,743 16 16 16 citations g-index h-index papers 16 16 16 13719 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	PINK1/Parkin-mediated mitophagy is dependent on VDAC1 and p62/SQSTM1. Nature Cell Biology, 2010, 12, 119-131.	10.3	2,360
2	Cellular mechanisms and physiological consequences of redox-dependent signalling. Nature Reviews Molecular Cell Biology, 2014, 15, 411-421.	37.0	1,597
3	Measuring InÂVivo Mitophagy. Molecular Cell, 2015, 60, 685-696.	9.7	512
4	Nrf2 regulates ROS production by mitochondria and NADPH oxidase. Biochimica Et Biophysica Acta - General Subjects, 2015, 1850, 794-801.	2.4	444
5	Nrf2 impacts cellular bioenergetics by controlling substrate availability for mitochondrial respiration. Biology Open, 2013, 2, 761-770.	1.2	346
6	The multifaceted role of Nrf2 in mitochondrial function. Current Opinion in Toxicology, 2016, 1, 80-91.	5.0	275
7	The PINK1/Parkin-mediated mitophagy is compromised by PD-associated mutations. Autophagy, 2010, 6, 871-878.	9.1	267
8	The Ins and Outs of Mitochondrial Calcium. Circulation Research, 2015, 116, 1810-1819.	4.5	214
9	MICU1 Serves as a Molecular Gatekeeper to Prevent InÂVivo Mitochondrial Calcium Overload. Cell Reports, 2016, 16, 1561-1573.	6.4	175
10	Signalling properties of inorganic polyphosphate in the mammalian brain. Nature Communications, 2013, 4, 1362.	12.8	132
11	Assessment of cardiac function in mice lacking the mitochondrial calcium uniporter. Journal of Molecular and Cellular Cardiology, 2015, 85, 178-182.	1.9	106
12	Unresolved questions from the analysis of mice lacking MCU expression. Biochemical and Biophysical Research Communications, 2014, 449, 384-385.	2.1	93
13	The spatiotemporal regulation of the Keap1–Nrf2 pathway and its importance in cellular bioenergetics. Biochemical Society Transactions, 2015, 43, 602-610.	3.4	69
14	Cyclophilin D-mediated regulation of the permeability transition pore is altered in mice lacking the mitochondrial calcium uniporter. Cardiovascular Research, 2019, 115, 385-394.	3.8	63
15	Broad AOX expression in a genetically tractable mouse model does not disturb normal physiology. DMM Disease Models and Mechanisms, 2017, 10, 163-171.	2.4	46
16	EMRE is essential for mitochondrial calcium uniporter activity in a mouse model. JCI Insight, 2020, 5, .	5.0	44