
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11476400/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Peripheral glia diversity. Journal of Anatomy, 2022, 241, 1219-1234.	1.5	17
2	Raising cGMP restores proteasome function and myelination in mice with a proteotoxic neuropathy. Brain, 2022, 145, 168-178.	7.6	7
3	Beyond Wrapping: Canonical and Noncanonical Functions of Schwann Cells. Annual Review of Neuroscience, 2022, 45, 561-580.	10.7	11
4	Schwann cell interactions during the development of the peripheral nervous system. Developmental Neurobiology, 2021, 81, 464-489.	3.0	43
5	The Hippo pathway: Horizons for innovative treatments of peripheral nerve diseases. Journal of the Peripheral Nervous System, 2021, 26, 4-16.	3.1	10
6	Calcineurin Activity Is Increased in Charcot-Marie-Tooth 1B Demyelinating Neuropathy. Journal of Neuroscience, 2021, 41, 4536-4548.	3.6	3
7	Rac1 and Rac3 have opposite functions in Schwann cells during developmental myelination. Neuroscience Letters, 2021, 753, 135868.	2.1	3
8	Prohibitin 1 is essential to preserve mitochondria and myelin integrity in Schwann cells. Nature Communications, 2021, 12, 3285.	12.8	27
9	Activation of mTORC1 and c-Jun by Prohibitin1 loss in Schwann cells may link mitochondrial dysfunction to demyelination. ELife, 2021, 10, .	6.0	15
10	Phosphorylation of eIF2α Promotes Schwann Cell Differentiation and Myelination in CMT1B Mice with Activated UPR. Journal of Neuroscience, 2020, 40, 8174-8187.	3.6	14
11	Deletion of Calcineurin in Schwann Cells Does Not Affect Developmental Myelination, But Reduces Autophagy and Delays Myelin Clearance after Peripheral Nerve Injury. Journal of Neuroscience, 2020, 40, 6165-6176.	3.6	24
12	Schwann cells ER-associated degradation contributes to myelin maintenance in adult nerves and limits demyelination in CMT1B mice. PLoS Genetics, 2019, 15, e1008069.	3.5	18
13	Neuregulin 1 type III improves peripheral nerve myelination in a mouse model of congenital hypomyelinating neuropathy. Human Molecular Genetics, 2019, 28, 1260-1273.	2.9	28
14	Enhanced axonal neuregulin-1 type-III signaling ameliorates neurophysiology and hypomyelination in a Charcot–Marie–Tooth type 1B mouse model. Human Molecular Genetics, 2019, 28, 992-1006.	2.9	24
15	A nonsense mutation in myelin protein zero causes congenital hypomyelination neuropathy through altered P0 membrane targeting and gain of abnormal function. Human Molecular Genetics, 2019, 28, 124-132.	2.9	12
16	Sustained Expression of Negative Regulators of Myelination Protects Schwann Cells from Dysmyelination in a Charcot–Marie–Tooth 1B Mouse Model. Journal of Neuroscience, 2018, 38, 4275-4287.	3.6	25
17	GPR56/ADGRG1 regulates development and maintenance of peripheral myelin. Journal of Experimental Medicine, 2018, 215, 941-961.	8.5	51
18	The Pseudopod System for Axon-Glia Interactions: Stimulation and Isolation of Schwann Cell Protrusions that Form in Response to Axonal Membranes. Methods in Molecular Biology, 2018, 1739, 233-253.	0.9	7

#	Article	IF	CITATIONS
19	Impairment of protein degradation and proteasome function in hereditary neuropathies. Glia, 2018, 66, 379-395.	4.9	32
20	Acetyl oA production from pyruvate is not necessary for preservation of myelin. Glia, 2017, 65, 1626-1639.	4.9	24
21	Ablation of <i>Perk</i> in Schwann Cells Improves Myelination in the S63del Charcot-Marie-Tooth 1B Mouse. Journal of Neuroscience, 2016, 36, 11350-11361.	3.6	24
22	How Schwann Cells Sort Axons. Neuroscientist, 2016, 22, 252-265.	3.5	147
23	The Adhesion GPCR GPR126 Has Distinct, Domain-Dependent Functions in Schwann Cell Development Mediated by Interaction with Laminin-211. Neuron, 2015, 85, 755-769.	8.1	224
24	Perlecan is recruited by dystroglycan to nodes of Ranvier and binds the clustering molecule gliomedin. Journal of Cell Biology, 2015, 208, 313-329.	5.2	37
25	New insights on schwann cell development. Glia, 2015, 63, 1376-1393.	4.9	210
26	The Gdap1 knockout mouse mechanistically links redox control to Charcot–Marie–Tooth disease. Brain, 2014, 137, 668-682.	7.6	63
27	Schwann Cell LRP1 Regulates Remak Bundle Ultrastructure and Axonal Interactions to Prevent Neuropathic Pain. Journal of Neuroscience, 2013, 33, 5590-5602.	3.6	62
28	Loss of SOX10 function contributes to the phenotype of human Merlin-null schwannoma cells. Brain, 2013, 136, 549-563.	7.6	35
29	Resetting translational homeostasis restores myelination in Charcot-Marie-Tooth disease type 1B mice. Journal of Experimental Medicine, 2013, 210, 821-838.	8.5	115
30	Stabilization of the dystroglycan complex in Cajal bands of myelinating Schwann cells through plectin-mediated anchorage to vimentin filaments. Glia, 2013, 61, 1274-1287.	4.9	27
31	MpzR98C arrests Schwann cell development in a mouse model of early-onset Charcot–Marie–Tooth disease type 1B. Brain, 2012, 135, 2032-2047.	7.6	61
32	Curcumin derivatives promote Schwann cell differentiation and improve neuropathy in R98C CMT1B mice. Brain, 2012, 135, 3551-3566.	7.6	90
33	Selective knockdown of mutant SOD1 in Schwann cells ameliorates disease in G85R mutant SOD1 transgenic mice. Neurobiology of Disease, 2012, 48, 52-57.	4.4	23
34	Mesenchymal stem cells facilitate axon sorting, myelination, and functional recovery in paralyzed mice deficient in Schwann cellâ€derived laminin. Glia, 2011, 59, 267-277.	4.9	53
35	Rac1 GTPase controls myelination and demyelination. Bioarchitecture, 2011, 1, 110-113.	1.5	24
36	Non-redundant function of dystroglycan and β1 integrins in radial sorting of axons. Development (Cambridge), 2011, 138, 4025-4037.	2.5	55

#	Article	IF	CITATIONS
37	MMP2-9 Cleavage of Dystroglycan Alters the Size and Molecular Composition of Schwann Cell Domains. Journal of Neuroscience, 2011, 31, 12208-12217.	3.6	43
38	N-WASp is required for Schwann cell cytoskeletal dynamics, normal myelin gene expression and peripheral nerve myelination. Development (Cambridge), 2011, 138, 1329-1337.	2.5	59
39	TACE (ADAM17) inhibits Schwann cell myelination. Nature Neuroscience, 2011, 14, 857-865.	14.8	136
40	Actin Polymerization Is Essential for Myelin Sheath Fragmentation during Wallerian Degeneration. Journal of Neuroscience, 2011, 31, 2009-2015.	3.6	96
41	P0 (Protein Zero) Mutation S34C Underlies Instability of Internodal Myelin in S63C Mice. Journal of Biological Chemistry, 2010, 285, 42001-42012.	3.4	21
42	MicroRNA-Deficient Schwann Cells Display Congenital Hypomyelination. Journal of Neuroscience, 2010, 30, 7722-7728.	3.6	85
43	Schwann cells expressing dismutase active mutant SOD1 unexpectedly slow disease progression in ALS mice. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 4465-4470.	7.1	148
44	A Laminin-2, Dystroglycan, Utrophin Axis Is Required for Compartmentalization and Elongation of Myelin Segments. Journal of Neuroscience, 2009, 29, 3908-3919.	3.6	61
45	Dramatic Reduction of PrPC Level and Glycosylation in Peripheral Nerves following PrP Knock-Out from Schwann Cells Does Not Prevent Transmissible Spongiform Encephalopathy Neuroinvasion. Journal of Neuroscience, 2009, 29, 15445-15454.	3.6	14
46	SCAP is required for timely and proper myelin membrane synthesis. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 21383-21388.	7.1	99
47	Myelin under stress. Journal of Neuroscience Research, 2009, 87, 3241-3249.	2.9	39
48	Notch controls embryonic Schwann cell differentiation, postnatal myelination and adult plasticity. Nature Neuroscience, 2009, 12, 839-847.	14.8	285
49	The function of RhoGTPases in axon ensheathment and myelination. Glia, 2008, 56, 1508-1517.	4.9	79
50	Ablation of the UPR-Mediator CHOP Restores MotorÂFunction and Reduces Demyelination inÂCharcot-Marie-Tooth 1B Mice. Neuron, 2008, 57, 393-405.	8.1	245
51	c-Jun is a negative regulator of myelination. Journal of Cell Biology, 2008, 181, 625-637.	5.2	345
52	Â6Â4 Integrin and Dystroglycan Cooperate to Stabilize the Myelin Sheath. Journal of Neuroscience, 2008, 28, 6714-6719.	3.6	78
53	β1 integrin activates Rac1 in Schwann cells to generate radial lamellae during axonal sorting and myelination. Journal of Cell Biology, 2007, 177, 1063-1075.	5.2	163
54	Basal lamina: Schwann cells wrap to the rhythm of space-time. Current Opinion in Neurobiology, 2006, 16, 501-507.	4.2	75

#	Article	IF	CITATIONS
55	TGFÂ Type II Receptor Signaling Controls Schwann Cell Death and Proliferation in Developing Nerves. Journal of Neuroscience, 2006, 26, 8417-8427.	3.6	65
56	Different Intracellular Pathomechanisms Produce Diverse <i>Myelin Protein Zero</i> Neuropathies in Transgenic Mice. Journal of Neuroscience, 2006, 26, 2358-2368.	3.6	144
57	Structure and Stability of Internodal Myelin in Mouse Models of Hereditary Neuropathy. Journal of Neuropathology and Experimental Neurology, 2005, 64, 976-990.	1.7	51
58	Schwann Cell-Specific Ablation of Laminin Â1 Causes Apoptosis and Prevents Proliferation. Journal of Neuroscience, 2005, 25, 4463-4472.	3.6	140
59	Both Laminin and Schwann Cell Dystroglycan Are Necessary for Proper Clustering of Sodium Channels at Nodes of Ranvier. Journal of Neuroscience, 2005, 25, 9418-9427.	3.6	101
60	Dysmyelinated Lower Motor Neurons Retract and Regenerate Dysfunctional Synaptic Terminals. Journal of Neuroscience, 2004, 24, 3890-3898.	3.6	35
61	Characterization of a Schwann cell enhancer in the myelin basic protein gene. Journal of Neurochemistry, 2004, 91, 813-824.	3.9	18
62	Unique Role of Dystroglycan in Peripheral Nerve Myelination, Nodal Structure, and Sodium Channel Stabilization. Neuron, 2003, 38, 747-758.	8.1	230
63	Expression of Laminin Receptors in Schwann Cell Differentiation: Evidence for Distinct Roles. Journal of Neuroscience, 2003, 23, 5520-5530.	3.6	100
64	Conditional disruption of \hat{l}^21 integrin in Schwann cells impedes interactions with axons. Journal of Cell Biology, 2002, 156, 199-210.	5.2	294
65	Epitope-Tagged POGlycoprotein Causes Charcot-Marie-Tooth–Like Neuropathy in Transgenic Mice. Journal of Cell Biology, 2000, 151, 1035-1046.	5.2	53
66	A novel POglycoprotein transgene activates expression oflacZ in myelin-forming Schwann cells. European Journal of Neuroscience, 1999, 11, 1577-1586.	2.6	57