Robert Todd Alexander

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1147431/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Molecular mechanisms altering tubular calcium reabsorption. Pediatric Nephrology, 2022, 37, 707-718.	1.7	15
2	Gentamicin Inhibits Ca2+ Channel TRPV5 and Induces Calciuresis Independent of the Calcium-Sensing Receptor–Claudin-14 Pathway. Journal of the American Society of Nephrology: JASN, 2022, 33, 547-564.	6.1	8
3	Rituximab Use for the Treatment of Childhood Nephrotic Syndrome by Canadian Pediatric Nephrologists: A National Survey. Canadian Journal of Kidney Health and Disease, 2022, 9, 205435812210799.	1.1	1
4	Differential parathyroid and kidney Ca2+-sensing receptor activation in autosomal dominant hypocalcemia 1. EBioMedicine, 2022, 78, 103947.	6.1	4
5	The contribution of regulated colonic calcium absorption to the maintenance of calcium homeostasis. Journal of Steroid Biochemistry and Molecular Biology, 2022, 220, 106098.	2.5	10
6	Regulation of 1 and 24 hydroxylation of vitamin D metabolites in the proximal tubule. Experimental Biology and Medicine, 2022, 247, 1103-1111.	2.4	9
7	Mutations in <i>CLDN2</i> Are Not a Common Cause of Pediatric Idiopathic Hypercalciuria in Canada. Canadian Journal of Kidney Health and Disease, 2022, 9, 205435812210987.	1.1	3
8	Localization and regulation of claudin-14 in experimental models of hypercalcemia. American Journal of Physiology - Renal Physiology, 2021, 320, F74-F86.	2.7	17
9	Increased intestinal phosphate absorption, an oftenâ€overlooked effect of vitamin D. Journal of Physiology, 2021, 599, 1021-1022.	2.9	2
10	Intestinal resection affects whole-body arginine synthesis in neonatal piglets. Pediatric Research, 2021, 89, 1420-1426.	2.3	1
11	<i>CYP24A1</i> and <i>SLC34A1</i> Pathogenic Variants Are Uncommon in a Canadian Cohort of Children with Hypercalcemia or Hypercalciuria. Hormone Research in Paediatrics, 2021, 94, 124-132.	1.8	3
12	The role of calcium-sensing receptor signaling in regulating transepithelial calcium transport. Experimental Biology and Medicine, 2021, 246, 2407-2419.	2.4	7
13	Renal claudin-14 expression is not required for regulating Mg ²⁺ balance in mice. American Journal of Physiology - Renal Physiology, 2021, 320, F897-F907.	2.7	8
14	Activation of the calcium sensing receptor increases claudinâ€14 expression via a PLC â€p38â€Sp1 pathway. FASEB Journal, 2021, 35, e21982.	0.5	7
15	Claudin-2 and claudin-12 form independent, complementary pores required to maintain calcium homeostasis. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	27
16	Claudinâ€15 is not a drag!. Acta Physiologica, 2020, 228, e13397.	3.8	2
17	Canadian Society of Nephrology Commentary on the Kidney Disease Improving Global Outcomes 2017 Clinical Practice Guideline Update for the Diagnosis, Evaluation, Prevention, and Treatment of Chronic Kidney Disease-Mineral and Bone Disorder. Canadian Journal of Kidney Health and Disease, 2020. 7. 205435812094427.	1.1	16
18	The intermembrane space protein Mix23 is a novel stress-induced mitochondrial import factor. Journal of Biological Chemistry, 2020, 295, 14686-14697.	3.4	14

#	Article	IF	CITATIONS
19	Claudin-12 Knockout Mice Demonstrate Reduced Proximal Tubule Calcium Permeability. International Journal of Molecular Sciences, 2020, 21, 2074.	4.1	31
20	SLC26A7 protein is a chloride/bicarbonate exchanger and its abundance is osmolarity- and pH-dependent in renal epithelial cells. Biochimica Et Biophysica Acta - Biomembranes, 2020, 1862, 183238.	2.6	2
21	Claudin-2 deficiency associates with hypercalciuria in mice and human kidney stone disease. Journal of Clinical Investigation, 2020, 130, 1948-1960.	8.2	61
22	Developmental Changes in Phosphate Homeostasis. Reviews of Physiology, Biochemistry and Pharmacology, 2020, 179, 117-138.	1.6	1
23	The ion channel function of polycystinâ€1 in the polycystinâ€1/polycystinâ€2 complex. EMBO Reports, 2019, 20, e48336.	4.5	59
24	Claudin-2 suppresses GEF-H1, RHOA, and MRTF, thereby impacting proliferation and profibrotic phenotype of tubular cells. Journal of Biological Chemistry, 2019, 294, 15446-15465.	3.4	22
25	TRPV6 and Cav1.3 Mediate Distal Small Intestine Calcium Absorption Before Weaning. Cellular and Molecular Gastroenterology and Hepatology, 2019, 8, 625-642.	4.5	21
26	Increased FoxO3a expression prevents osteoblast differentiation and matrix calcification. Bone Reports, 2019, 10, 100206.	0.4	9
27	NHE8 attenuates Ca ²⁺ influx into NRK cells and the proximal tubule epithelium. American Journal of Physiology - Renal Physiology, 2019, 317, F240-F253.	2.7	9
28	Tauroursodeoxycholic acid attenuates cyclosporine-induced renal fibrogenesis in the mouse model. Biochimica Et Biophysica Acta - General Subjects, 2019, 1863, 1210-1216.	2.4	4
29	Intestinal phosphate absorption: The paracellular pathway predominates?. Experimental Biology and Medicine, 2019, 244, 646-654.	2.4	23
30	Ces1d deficiency protects against high-sucrose diet-induced hepatic triacylglycerol accumulation. Journal of Lipid Research, 2019, 60, 880-891.	4.2	16
31	Renal Tubular Acidosis. Pediatric Clinics of North America, 2019, 66, 135-157.	1.8	32
32	Nocturnal enuresis in children is associated with differences in autonomic control. Sleep, 2019, 42, .	1.1	10
33	Activation of the calcium-sensing receptor attenuates TRPV6-dependent intestinal calcium absorption. JCI Insight, 2019, 4, .	5.0	25
34	Claudinâ€2 Confers Calcium Permeability to the Jejunum and Ileum in Early Life. FASEB Journal, 2019, 33, 575.16.	0.5	0
35	Thiazide Diuretic Dose and Risk of Kidney Stones in Older Adults: A Retrospective Cohort Study. Canadian Journal of Kidney Health and Disease, 2018, 5, 205435811878748.	1.1	12
36	Inhibition of sodium/hydrogen exchanger 3 in the gastrointestinal tract by tenapanor reduces paracellular phosphate permeability. Science Translational Medicine, 2018, 10, .	12.4	91

#	Article	IF	CITATIONS
37	Claudins and nephrolithiasis. Current Opinion in Nephrology and Hypertension, 2018, 27, 268-276.	2.0	18
38	H ⁺ -ATPase B1 subunit localizes to thick ascending limb and distal convoluted tubule of rodent and human kidney. American Journal of Physiology - Renal Physiology, 2018, 315, F429-F444.	2.7	15
39	Proteasomal degradation competes with Mia40-mediated import into mitochondria. BMC Biology, 2018, 16, 63.	3.8	4
40	Ubiquitin COOH-terminal hydrolase L1 deletion is associated with urinary α-klotho deficiency and perturbed phosphate homeostasis. American Journal of Physiology - Renal Physiology, 2018, 315, F353-F363.	2.7	3
41	Double Knockout of the Na+-Driven Clâ^'/HCO3 â^' Exchanger and Na+/Clâ^' Cotransporter Induces Hypokalemia and Volume Depletion. Journal of the American Society of Nephrology: JASN, 2017, 28, 130-139.	6.1	49
42	A variant in a <i>cis</i> -regulatory element enhances claudin-14 expression and is associated with pediatric-onset hypercalciuria and kidney stones. Human Mutation, 2017, 38, 649-657.	2.5	24
43	Effect of diuretics on renal tubular transport of calcium and magnesium. American Journal of Physiology - Renal Physiology, 2017, 312, F998-F1015.	2.7	66
44	NHA2 is expressed in distal nephron and regulated by dietary sodium. Journal of Physiology and Biochemistry, 2017, 73, 199-205.	3.0	16
45	Urinary sodium and calcium excretion: via endothelinâ€1 do they part?. Journal of Physiology, 2017, 595, 2415-2416.	2.9	Ο
46	Expression of transcellular and paracellular calcium and magnesium transport proteins in renal and intestinal epithelia during lactation. American Journal of Physiology - Renal Physiology, 2017, 313, F629-F640.	2.7	28
47	Antihypertensive medications and the risk of kidney stones in older adults: a retrospective cohort study. Hypertension Research, 2017, 40, 837-842.	2.7	11
48	Intestinal absorption and renal reabsorption of calcium throughout postnatal development. Experimental Biology and Medicine, 2017, 242, 840-849.	2.4	22
49	Deficiency of Carbonic Anhydrase II Results in a Urinary Concentrating Defect. Frontiers in Physiology, 2017, 8, 1108.	2.8	14
50	Effects of phospho- and calciotropic hormones on electrolyte transport in the proximal tubule. F1000Research, 2017, 6, 1797.	1.6	13
51	The carboxyl-terminally truncated kidney anion exchanger 1 R901X dRTA mutant is unstable at the plasma membrane. American Journal of Physiology - Cell Physiology, 2016, 310, C764-C772.	4.6	5
52	Role of enteroendocrine Lâ€cells in arginine vasopressinâ€mediated inhibition of colonic anion secretion. Journal of Physiology, 2016, 594, 4865-4878.	2.9	24
53	Cognitive Enhancement in Infants Associated with Increased Maternal Fruit Intake During Pregnancy: Results from a Birth Cohort Study with Validation in an Animal Model. EBioMedicine, 2016, 8, 331-340.	6.1	19
54	Renal Atp6ap2/(Pro)renin Receptor Is Required for Normal Vacuolar H+-ATPase Function but Not for the Renin-Angiotensin System. Journal of the American Society of Nephrology: JASN, 2016, 27, 3320-3330.	6.1	91

ROBERT TODD ALEXANDER

#	Article	IF	CITATIONS
55	A disulfide bond in the TIM23 complex is crucial for voltage gating and mitochondrial protein import. Journal of Cell Biology, 2016, 214, 417-431.	5.2	48
56	Acidosis and Urinary Calcium Excretion: Insights from Genetic Disorders. Journal of the American Society of Nephrology: JASN, 2016, 27, 3511-3520.	6.1	63
57	Patient and Stone Characteristics Associated with Surgical Intervention in Pediatrics. Canadian Journal of Kidney Health and Disease, 2015, 2, 57.	1.1	6
58	Increased water flux induced by an aquaporin-1/carbonic anhydrase II interaction. Molecular Biology of the Cell, 2015, 26, 1106-1118.	2.1	24
59	Ultrastructural and immunohistochemical localization of plasma membrane Ca ²⁺ -ATPase 4 in Ca ²⁺ -transporting epithelia. American Journal of Physiology - Renal Physiology, 2015, 309, F604-F616.	2.7	33
60	Carbonic anhydrase II binds to and increases the activity of the epithelial sodium-proton exchanger, NHE3. American Journal of Physiology - Renal Physiology, 2015, 309, F383-F392.	2.7	36
61	Clustered phosphatidylinositol 4,5 bisphosphate accumulation and ezrin phosphorylation in response to CLIC5A. Journal of Cell Science, 2014, 127, 5164-78.	2.0	21
62	Paracellular calcium transport across renal and intestinal epithelia. Biochemistry and Cell Biology, 2014, 92, 467-480.	2.0	53
63	Degradation mechanism of a Golgi-retained distal renal tubular acidosis mutant of the kidney anion exchanger 1 in renal cells. American Journal of Physiology - Cell Physiology, 2014, 307, C296-C307.	4.6	12
64	Kidney Stones and Cardiovascular Events. Clinical Journal of the American Society of Nephrology: CJASN, 2014, 9, 506-512.	4.5	113
65	Traditional and emerging roles for the SLC9 Na+/H+ exchangers. Pflugers Archiv European Journal of Physiology, 2014, 466, 61-76.	2.8	129
66	Substantial practice variation exists in the management of childhood nephrotic syndrome. Pediatric Nephrology, 2013, 28, 2289-2298.	1.7	33
67	Proximal tubular NHEs: sodium, protons and calcium?. American Journal of Physiology - Renal Physiology, 2013, 305, F229-F236.	2.7	42
68	The Na ⁺ /H ⁺ exchanger isoform 3 is required for active paracellular and transcellular Ca ²⁺ transport across murine cecum. American Journal of Physiology - Renal Physiology, 2013, 305, G303-G313.	3.4	37
69	Activation of the Ca ²⁺ -sensing receptor increases renal claudin-14 expression and urinary Ca ²⁺ excretion. American Journal of Physiology - Renal Physiology, 2013, 304, F761-F769.	2.7	103
70	Ezrin Is Required for the Functional Regulation of the Epithelial Sodium Proton Exchanger, NHE3. PLoS ONE, 2013, 8, e55623.	2.5	20
71	Adaptor protein 1 complexes regulate intracellular trafficking of the kidney anion exchanger 1 in epithelial cells. American Journal of Physiology - Cell Physiology, 2012, 303, C554-C566.	4.6	17
72	Claudin-4 forms a paracellular barrier, revealing the interdependence of claudin expression in the loose epithelial cell culture model opossum kidney cells. American Journal of Physiology - Cell Physiology, 2012, 303, C1278-C1291.	4.6	30

#	Article	IF	CITATIONS
73	The epithelial sodium/proton exchanger, NHE3, is necessary for renal and intestinal calcium (re)absorption. American Journal of Physiology - Renal Physiology, 2012, 302, F943-F956.	2.7	83
74	Incidence and causes of end-stage renal disease among Aboriginal children and young adults. Cmaj, 2012, 184, E758-E764.	2.0	19
75	Survival and transplantation outcomes of children less than 2 years of age with end-stage renal disease. Pediatric Nephrology, 2012, 27, 1975-1983.	1.7	48
76	Kidney stones and kidney function loss: a cohort study. BMJ, The, 2012, 345, e5287-e5287.	6.0	238
77	Membrane surface charge dictates the structure and function of the epithelial Na ⁺ /H ⁺ exchanger. EMBO Journal, 2011, 30, 679-691.	7.8	53
78	The calmodulin antagonist W-7 inhibits the epithethial Na ⁺ /H ⁺ exchanger via modulating membrane surface potential. Channels, 2011, 5, 308-313.	2.8	5
79	Survival in Pediatric Dialysis and Transplant Patients. Clinical Journal of the American Society of Nephrology: CJASN, 2011, 6, 1094-1099.	4.5	72
80	EGF Increases TRPM6 Activity and Surface Expression. Journal of the American Society of Nephrology: JASN, 2009, 20, 78-85.	6.1	160
81	Klotho Prevents Renal Calcium Loss. Journal of the American Society of Nephrology: JASN, 2009, 20, 2371-2379.	6.1	105
82	Tethering, recycling and activation of the epithelial sodium–proton exchanger, NHE3. Journal of Experimental Biology, 2009, 212, 1630-1637.	1.7	51
83	Calcium and phosphate homeostasis: Concerted interplay of new regulators. Annals of Medicine, 2008, 40, 82-91.	3.8	159
84	Molecular Determinants of Magnesium Homeostasis. Journal of the American Society of Nephrology: JASN, 2008, 19, 1451-1458.	6.1	133
85	Osmotic cell shrinkage activates ezrin/radixin/moesin (ERM) proteins: activation mechanisms and physiological implications. American Journal of Physiology - Cell Physiology, 2008, 294, C197-C212.	4.6	56
86	Membrane Curvature Alters the Activation Kinetics of the Epithelial Na+/H+ Exchanger, NHE3. Journal of Biological Chemistry, 2007, 282, 7376-7384.	3.4	31
87	Expression and Targeting of CX3CL1 (Fractalkine) in Renal Tubular Epithelial Cells. Journal of the American Society of Nephrology: JASN, 2007, 18, 74-83.	6.1	32
88	The prevalence of BK viremia and urinary viral shedding in a pediatric renal transplant population: A single-center retrospective analysis. Pediatric Transplantation, 2006, 10, 586-592.	1.0	27
89	Activation of Kinases upon Volume Changes: Role in Cellular Homeostasis. , 2006, 152, 105-124.		8
90	Rho GTPases dictate the mobility of the Na/H exchanger NHE3 in epithelia: Role in apical retention and targeting. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 12253-12258.	7.1	53