Andrew D Sharrocks

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1147011/publications.pdf

Version: 2024-02-01

48 papers

2,440 citations

279701 23 h-index 214721 47 g-index

349 all docs 349 docs citations

349 times ranked 4374 citing authors

#	Article	IF	CITATIONS
1	MAP kinase signalling cascades and transcriptional regulation. Gene, 2013, 513, 1-13.	1.0	366
2	SUMO Promotes HDAC-Mediated Transcriptional Repression. Molecular Cell, 2004, 13, 611-617.	4.5	312
3	An extended consensus motif enhances the specificity of substrate modification by SUMO. EMBO Journal, 2006, 25, 5083-5093.	3.5	181
4	Temporal Recruitment of the mSin3A-Histone Deacetylase Corepressor Complex to the ETS Domain Transcription Factor Elk-1. Molecular and Cellular Biology, 2001, 21, 2802-2814.	1.1	125
5	PIAS proteins and transcriptional regulation-more than just SUMO E3 ligases?. Genes and Development, 2006, 20, 754-758.	2.7	123
6	Elucidation of the ELK1 target gene network reveals a role in the coordinate regulation of core components of the gene regulation machinery. Genome Research, 2009, 19, 1963-1973.	2.4	119
7	Otx2 and Oct4 Drive Early Enhancer Activation during Embryonic Stem Cell Transition from Naive Pluripotency. Cell Reports, 2014, 7, 1968-1981.	2.9	117
8	Immediate-early gene activation by the MAPK pathways: what do and don't we know?. Biochemical Society Transactions, 2012, 40, 58-66.	1.6	106
9	Molecular phenotyping reveals the identity of Barrett's esophagus and its malignant transition. Science, 2021, 373, 760-767.	6.0	99
10	ELK1 Uses Different DNA Binding Modes to Regulate Functionally Distinct Classes of Target Genes. PLoS Genetics, 2012, 8, e1002694.	1.5	66
11	The forkhead transcription factor FOXK2 acts as a chromatin targeting factor for the BAP1-containing histone deubiquitinase complex. Nucleic Acids Research, 2014, 42, 6232-6242.	6.5	66
12	Extracellular Signal-Regulated Kinase Mitogen-Activated Protein Kinase Signaling Initiates a Dynamic Interplay between Sumoylation and Ubiquitination To Regulate the Activity of the Transcriptional Activator PEA3. Molecular and Cellular Biology, 2009, 29, 3204-3218.	1.1	63
13	Classifying cells with Scasat, a single-cell ATAC-seq analysis tool. Nucleic Acids Research, 2019, 47, e10-e10.	6.5	60
14	The ERK MAP kinase-PEA3/ETV4-MMP-1 axis is operative in oesophageal adenocarcinoma. Molecular Cancer, 2010, 9, 313.	7.9	51
15	Identification of a primitive intestinal transcription factor network shared between esophageal adenocarcinoma and its precancerous precursor state. Genome Research, 2019, 29, 723-736.	2.4	50
16	ZIC3 Controls the Transition from Naive to Primed Pluripotency. Cell Reports, 2019, 27, 3215-3227.e6.	2.9	47
17	Interaction of Transcription Factors with Serum Response Factor. Journal of Biological Chemistry, 1998, 273, 10506-10514.	1.6	46
18	Screen for multi-SUMO–binding proteins reveals a multi-SIM–binding mechanism for recruitment of the transcriptional regulator ZMYM2 to chromatin. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, E4854-63.	3.3	46

#	Article	IF	CITATIONS
19	Open chromatin profiling identifies AP1 as a transcriptional regulator in oesophageal adenocarcinoma. PLoS Genetics, 2017, 13, e1006879.	1.5	41
20	Genome-wide binding studies reveal DNA binding specificity mechanisms and functional interplay amongst Forkhead transcription factors. Nucleic Acids Research, 2016, 44, 1566-1578.	6.5	35
21	Cell Cycle: Sustained ERK Signalling Represses the Inhibitors. Current Biology, 2006, 16, R540-R542.	1.8	32
22	Deregulation of the FOXM1 target gene network and its coregulatory partners in oesophageal adenocarcinoma. Molecular Cancer, 2015, 14, 69.	7.9	30
23	Dynamic modification of the ETS transcription factor PEA3 by sumoylation and p300-mediated acetylation. Nucleic Acids Research, 2011, 39, 6403-6413.	6.5	27
24	Mutations of the Transcriptional Corepressor ZMYM2 Cause Syndromic Urinary Tract Malformations. American Journal of Human Genetics, 2020, 107, 727-742.	2.6	25
25	Authentication and characterisation of a new oesophageal adenocarcinoma cell line: MFD-1. Scientific Reports, 2016, 6, 32417.	1.6	20
26	SUMOylation modulates FOXK2-mediated paclitaxel sensitivity in breast cancer cells. Oncogenesis, 2018, 7, 29.	2.1	20
27	Cooperative behaviour and phenotype plasticity evolve during melanoma progression. Pigment Cell and Melanoma Research, 2020, 33, 695-708.	1.5	18
28	Dynamic changes in the epigenomic landscape regulate human organogenesis and link to developmental disorders. Nature Communications, 2020, 11 , 3920.	5.8	17
29	Jun-Mediated Changes in Cell Adhesion Contribute to Mouse Embryonic Stem Cell Exit from Ground State Pluripotency. Stem Cells, 2016, 34, 1213-1224.	1.4	14
30	Repurposing of KLF5 activates a cell cycle signature during the progression from a precursor state to oesophageal adenocarcinoma. ELife, 2020 , 9 , .	2.8	14
31	Protein kinase C coordinates histone H3 phosphorylation and acetylation. ELife, 2015, 4, e09886.	2.8	13
32	The Ubiquitin Ligase UBE3A Dampens ERK Pathway Signalling in HPV E6 Transformed HeLa Cells. PLoS ONE, 2015, 10, e0119366.	1.1	9
33	Changing partners: transcription factors form different complexes on and off chromatin. Molecular Systems Biology, 2015, 11, 782.	3.2	9
34	JNK-associated Leucine Zipper Protein Functions as a Docking Platform for Polo-like Kinase 1 and Regulation of the Associating Transcription Factor Forkhead Box Protein K1. Journal of Biological Chemistry, 2015, 290, 29617-29628.	1.6	9
35	The forkhead transcription factor FOXK2 premarks lineage-specific genes in human embryonic stem cells for activation during differentiation. Nucleic Acids Research, 2021, 49, 1345-1363.	6.5	9
36	Basic fibroblast growth factor induces matrix metalloproteinase-13 via ERK MAP kinase-altered phosphorylation and sumoylation of Elk-1 in human adult articular chondrocytes. Open Access Rheumatology: Research and Reviews, 2009, 1, 151.	0.8	8

#	Article	IF	Citations
37	WDR5, ASH2L, and RBBP5 control the efficiency of FOS transcript processing. Cellular and Molecular Biology Letters, 2014, 19, 215-32.	2.7	8
38	EINCR1 is an EGF inducible lincRNA overexpressed in lung adenocarcinomas. PLoS ONE, 2017, 12, e0181902.	1.1	5
39	PEGS: An efficient tool for gene set enrichment within defined sets of genomic intervals. F1000Research, 2021, 10, 570.	0.8	5
40	ELK1 has a dual activating and repressive role in human embryonic stem cells. Wellcome Open Research, 2019, 4, 41.	0.9	5
41	The Use of Multimeric Protein Scaffolds for Identifying Multi-SUMO Binding Proteins. Methods in Molecular Biology, 2016, 1475, 195-204.	0.4	4
42	RNF4 interacts with multiSUMOylated ETV4. Wellcome Open Research, 2016, 1, 3.	0.9	4
43	ELK1 has a dual activating and repressive role in human embryonic stem cells. Wellcome Open Research, 2019, 4, 41.	0.9	3
44	Genome-wide Interrogation of Protein-DNA Interactions in Mammalian Cells Using ChIPmentation. STAR Protocols, 2020, 1, 100187.	0.5	3
45	RNF4 interacts with multiSUMOylated ETV4. Wellcome Open Research, 0, 1, 3.	0.9	1
46	Activation of transcription factors by MAP kinases: the role of kinase docking domains. Biochemical Society Transactions, 1999, 27, A97-A97.	1.6	0
47	Geno2proteo, a Tool for Batch Retrieval of DNA and Protein Sequences from Any Genomic or Protein Regions. Journal of Integrative Bioinformatics, 2019, 16, .	1.0	0
48	Complexities in the role of acetylation dynamics in modifying inducible gene activation parameters. Nucleic Acids Research, 2021, 49, 12744-12756.	6.5	0