
Jonathan A Javitch

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1146698/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Parkinsonism-inducing neurotoxin, N-methyl-4-phenyl-1,2,3,6 -tetrahydropyridine: uptake of the metabolite N-methyl-4-phenylpyridine by dopamine neurons explains selective toxicity Proceedings of the National Academy of Sciences of the United States of America, 1985, 82, 2173-2177.	7.1	1,138
2	Structure of the Human Dopamine D3 Receptor in Complex with a D2/D3 Selective Antagonist. Science, 2010, 330, 1091-1095.	12.6	1,034
3	Functional Selectivity and Classical Concepts of Quantitative Pharmacology. Journal of Pharmacology and Experimental Therapeutics, 2007, 320, 1-13.	2.5	997
4	Activation of the β2-Adrenergic Receptor Involves Disruption of an Ionic Lock between the Cytoplasmic Ends of Transmembrane Segments 3 and 6. Journal of Biological Chemistry, 2001, 276, 29171-29177.	3.4	566
5	Structural Mimicry in G Protein-Coupled Receptors: Implications of the High-Resolution Structure of Rhodopsin for Structure-Function Analysis of Rhodopsin-Like Receptors. Molecular Pharmacology, 2001, 60, 1-19.	2.3	432
6	The Mechanism of a Neurotransmitter:Sodium Symporter—Inward Release of Na+ and Substrate IsÂTriggered by Substrate in a Second Binding Site. Molecular Cell, 2008, 30, 667-677.	9.7	352
7	Building a new conceptual framework for receptor heteromers. Nature Chemical Biology, 2009, 5, 131-134.	8.0	349
8	Amphetamine-induced loss of human dopamine transporter activity: An internalization-dependent and cocaine-sensitive mechanism. Proceedings of the National Academy of Sciences of the United States of America, 2000, 97, 6850-6855.	7.1	346
9	β2 Adrenergic Receptor Activation. Journal of Biological Chemistry, 2002, 277, 40989-40996.	3.4	339
10	Allosteric communication between protomers of dopamine class A GPCR dimers modulates activation. Nature Chemical Biology, 2009, 5, 688-695.	8.0	323
11	Treatment resistant depression: A multi-scale, systems biology approach. Neuroscience and Biobehavioral Reviews, 2018, 84, 272-288.	6.1	319
12	THEBINDINGSITE OFAMINERGICG PROTEIN–COUPLEDRECEPTORS: The Transmembrane Segments and Second Extracellular Loop. Annual Review of Pharmacology and Toxicology, 2002, 42, 437-467.	9.4	318
13	Discovery of β-Arrestin–Biased Dopamine D ₂ Ligands for Probing Signal Transduction Pathways Essential for Antipsychotic Efficacy. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 18488-18493.	7.1	312
14	Time-resolved FRET between GPCR ligands reveals oligomers in native tissues. Nature Chemical Biology, 2010, 6, 587-594.	8.0	306
15	Dopamine D2 receptors form higher order oligomers at physiological expression levels. EMBO Journal, 2008, 27, 2293-2304.	7.8	305
16	The binding sites for cocaine and dopamine in the dopamine transporter overlap. Nature Neuroscience, 2008, 11, 780-789.	14.8	304
17	From The Cover: Crosstalk in G protein-coupled receptors: Changes at the transmembrane homodimer interface determine activation. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 17495-17500.	7.1	277
18	Substrate-modulated gating dynamics in a Na+-coupled neurotransmitter transporter homologue. Nature, 2011, 474, 109-113.	27.8	276

#	Article	IF	CITATIONS
19	International Union of Basic and Clinical Pharmacology. LXVII. Recommendations for the Recognition and Nomenclature of G Protein-Coupled Receptor Heteromultimers. Pharmacological Reviews, 2007, 59, 5-13.	16.0	274
20	The role of kinetic context in apparent biased agonism at GPCRs. Nature Communications, 2016, 7, 10842.	12.8	270
21	Cyanine fluorophore derivatives with enhanced photostability. Nature Methods, 2012, 9, 68-71.	19.0	269
22	Uptake of MPP(+) by dopamine neurons explains selectivity of parkinsonism-inducing neurotoxin, MPTP. European Journal of Pharmacology, 1984, 106, 455-456.	3.5	265
23	Single-molecule analysis of ligand efficacy in β2AR–G-protein activation. Nature, 2017, 547, 68-73.	27.8	265
24	The Fourth Transmembrane Segment Forms the Interface of the Dopamine D2 Receptor Homodimer. Journal of Biological Chemistry, 2003, 278, 4385-4388.	3.4	257
25	Roles of the Akt/CSK-3 and Wnt Signaling Pathways in Schizophrenia and Antipsychotic Drug Action. American Journal of Psychiatry, 2010, 167, 388-396.	7.2	254
26	A Comprehensive Structure-Based Alignment of Prokaryotic and Eukaryotic Neurotransmitter/Na+Symporters (NSS) Aids in the Use of the LeuT Structure to Probe NSS Structure and Function. Molecular Pharmacology, 2006, 70, 1630-1642.	2.3	248
27	Amphetamine induces dopamine efflux through a dopamine transporter channel. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 3495-3500.	7.1	246
28	The Behavioral Effects of the Antidepressant Tianeptine Require the Mu-Opioid Receptor. Neuropsychopharmacology, 2017, 42, 2052-2063.	5.4	240
29	Mitogen-Activated Protein Kinase Regulates Dopamine Transporter Surface Expression and Dopamine Transport Capacity. Journal of Neuroscience, 2003, 23, 8480-8488.	3.6	239
30	Single-molecule dynamics of gating in a neurotransmitter transporter homologue. Nature, 2010, 465, 188-193.	27.8	239
31	Synthetic and Receptor Signaling Explorations of the <i>Mitragyna</i> Alkaloids: Mitragynine as an Atypical Molecular Framework for Opioid Receptor Modulators. Journal of the American Chemical Society, 2016, 138, 6754-6764.	13.7	233
32	Detection of antigen interactions ex vivo by proximity ligation assay: endogenous dopamine D2-adenosine A2A receptor complexes in the striatum. BioTechniques, 2011, 51, 111-118.	1.8	230
33	N-Terminal Phosphorylation of the Dopamine Transporter Is Required for Amphetamine-Induced Efflux. PLoS Biology, 2004, 2, e78.	5.6	221
34	Mutation of a Highly Conserved Aspartic Acid in the β ₂ Adrenergic Receptor: Constitutive Activation, Structural Instability, and Conformational Rearrangement of Transmembrane Segment 6. Molecular Pharmacology, 1999, 56, 175-184.	2.3	214
35	Mechanism of chloride interaction with neurotransmitter:sodium symporters. Nature, 2007, 449, 726-730.	27.8	212
36	The second extracellular loop of the dopamine D2 receptor lines the binding-site crevice. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 440-445.	7.1	210

#	Article	IF	CITATIONS
37	Calmodulin Kinase II Interacts with the Dopamine Transporter C Terminus to Regulate Amphetamine-Induced Reverse Transport. Neuron, 2006, 51, 417-429.	8.1	197
38	Symmetrical dimer of the human dopamine transporter revealed by cross-linking Cys-306 at the extracellular end of the sixth transmembrane segment. Proceedings of the National Academy of Sciences of the United States of America, 2001, 98, 10055-10060.	7.1	187
39	PI 3â€kinase regulation of dopamine uptake. Journal of Neurochemistry, 2002, 81, 859-869.	3.9	186
40	Binding of an octylglucoside detergent molecule in the second substrate (S2) site of LeuT establishes an inhibitor-bound conformation. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 5563-5568.	7.1	184
41	Constitutive Activation of the β2 Adrenergic Receptor Alters the Orientation of Its Sixth Membrane-spanning Segment. Journal of Biological Chemistry, 1997, 272, 18546-18549.	3.4	183
42	The organic cation transporter-3 is a pivotal modulator of neurodegeneration in the nigrostriatal dopaminergic pathway. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 8043-8048.	7.1	183
43	Ion/substrate-dependent conformational dynamics of a bacterial homolog of neurotransmitter:sodium symporters. Nature Structural and Molecular Biology, 2010, 17, 822-829.	8.2	183
44	D2 Receptors Regulate Dopamine Transporter Function via an Extracellular Signal-Regulated Kinases 1 and 2-Dependent and Phosphoinositide 3 Kinase-Independent Mechanism. Molecular Pharmacology, 2007, 71, 1222-1232.	2.3	182
45	Mapping the binding-site crevice of the dopamine D2 receptor by the substituted-cysteine accessibility method. Neuron, 1995, 14, 825-831.	8.1	179
46	Flotillin-1 is essential for PKC-triggered endocytosis and membrane microdomain localization of DAT. Nature Neuroscience, 2011, 14, 469-477.	14.8	177
47	Reaction of oxidized dopamine with endogenous cysteine residues in the human dopamine transporter. Journal of Neurochemistry, 2001, 76, 1242-1251.	3.9	175
48	Amphetamine-induced Dopamine Efflux. Journal of Biological Chemistry, 2003, 278, 12070-12077.	3.4	174
49	The Forgotten Serine. Journal of Biological Chemistry, 2000, 275, 37779-37788.	3.4	172
50	Monitoring the function of membrane transport proteins in detergent-solubilized form. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 3603-3608.	7.1	172
51	Amphetamine and Methamphetamine Differentially Affect Dopamine Transporters in Vitro and in Vivo. Journal of Biological Chemistry, 2009, 284, 2978-2989.	3.4	168
52	A Cluster of Aromatic Residues in the Sixth Membrane-Spanning Segment of the Dopamine D2 Receptor Is Accessible in the Binding-Site Crevice. Biochemistry, 1998, 37, 998-1006.	2.5	165
53	Increasing dopamine D2 receptor expression in the adult nucleus accumbens enhances motivation. Molecular Psychiatry, 2013, 18, 1025-1033.	7.9	162
54	Paraquat neurotoxicity is mediated by the dopamine transporter and organic cation transporter-3. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 20766-20771.	7.1	161

#	Article	IF	CITATIONS
55	Signaling pathways in schizophrenia: emerging targets and therapeutic strategies. Trends in Pharmacological Sciences, 2010, 31, 381-390.	8.7	159
56	A mechanism for intracellular release of Na+ by neurotransmitter/sodium symporters. Nature Structural and Molecular Biology, 2014, 21, 1006-1012.	8.2	159
57	Cocaine Increases Dopamine Uptake and Cell Surface Expression of Dopamine Transporters. Biochemical and Biophysical Research Communications, 2002, 290, 1545-1550.	2.1	156
58	Molecular Determinants of Selectivity and Efficacy at the Dopamine D3 Receptor. Journal of Medicinal Chemistry, 2012, 55, 6689-6699.	6.4	153
59	N-terminal Truncation of the Dopamine Transporter Abolishes Phorbol Ester- and Substance P Receptor-stimulated Phosphorylation without Impairing Transporter Internalization. Journal of Biological Chemistry, 2003, 278, 4990-5000.	3.4	152
60	Extrapyramidal side effects of antipsychotics are linked to their association kinetics at dopamine D2 receptors. Nature Communications, 2017, 8, 763.	12.8	148
61	Hetero-oligomerization of CCR2, CCR5, and CXCR4 and the Protean Effects of "Selective―Antagonists. Journal of Biological Chemistry, 2009, 284, 31270-31279.	3.4	146
62	Conformational dynamics of ligand-dependent alternating access in LeuT. Nature Structural and Molecular Biology, 2014, 21, 472-479.	8.2	136
63	Akt Is Essential for Insulin Modulation of Amphetamine-Induced Human Dopamine Transporter Cell-Surface Redistribution. Molecular Pharmacology, 2005, 68, 102-109.	2.3	132
64	A cysteine residue in the third membrane-spanning segment of the human D2 dopamine receptor is exposed in the binding-site crevice Proceedings of the National Academy of Sciences of the United States of America, 1994, 91, 10355-10359.	7.1	130
65	Cocaine alters the accessibility of endogenous cysteines in putative extracellular and intracellular loops of the human dopamine transporter. Proceedings of the National Academy of Sciences of the United States of America, 1998, 95, 9238-9243.	7.1	124
66	Residues in the Seventh Membrane-Spanning Segment of the Dopamine D2 Receptor Accessible in the Binding-Site Crevice. Biochemistry, 1996, 35, 11278-11285.	2.5	121
67	An Intracellular Interaction Network Regulates Conformational Transitions in the Dopamine Transporter. Journal of Biological Chemistry, 2008, 283, 17691-17701.	3.4	120
68	Crystal structure of a potassium ion transporter, TrkH. Nature, 2011, 471, 336-340.	27.8	120
69	7-Hydroxymitragynine Is an Active Metabolite of Mitragynine and a Key Mediator of Its Analgesic Effects. ACS Central Science, 2019, 5, 992-1001.	11.3	120
70	Sodium-Dependent Neurotransmitter TRANSPORTERS: OLIGOMERIZATION as a Determinant of Transporter Function and Trafficking. Molecular Interventions: Pharmacological Perspectives From Biology, Chemistry and Genomics, 2004, 4, 38-47.	3.4	119
71	Structural mimicry in G protein-coupled receptors: implications of the high-resolution structure of rhodopsin for structure-function analysis of rhodopsin-like receptors. Molecular Pharmacology, 2001, 60, 1-19.	2.3	119
72	Identification of Novel Functionally Selective <i>κ</i> -Opioid Receptor Scaffolds. Molecular Pharmacology, 2014, 85, 83-90.	2.3	117

#	Article	IF	CITATIONS
73	Human Immunodeficiency Virus (HIV) Infection of Human Macrophages Is Increased by Dopamine. American Journal of Pathology, 2009, 175, 1148-1159.	3.8	115
74	Syntaxin 1A Interaction with the Dopamine Transporter Promotes Amphetamine-Induced Dopamine Efflux. Molecular Pharmacology, 2008, 74, 1101-1108.	2.3	114
75	The Human Dopamine Transporter Forms a Tetramer in the Plasma Membrane. Journal of Biological Chemistry, 2003, 278, 45045-45048.	3.4	109
76	PIP2 regulates psychostimulant behaviors through its interaction with a membrane protein. Nature Chemical Biology, 2014, 10, 582-589.	8.0	109
77	A new mechanism of allostery in a G protein–coupled receptor dimer. Nature Chemical Biology, 2014, 10, 745-752.	8.0	108
78	CODA-RET reveals functional selectivity as a result of GPCR heteromerization. Nature Chemical Biology, 2011, 7, 624-630.	8.0	107
79	The atypical antidepressant and neurorestorative agent tianeptine is a μ-opioid receptor agonist. Translational Psychiatry, 2014, 4, e411-e411.	4.8	107
80	The Substrate-Driven Transition to an Inward-Facing Conformation in the Functional Mechanism of the Dopamine Transporter. PLoS ONE, 2011, 6, e16350.	2.5	107
81	Residues in the Fifth Membrane-Spanning Segment of the Dopamine D2 Receptor Exposed in the Binding-Site Crevice. Biochemistry, 1995, 34, 16433-16439.	2.5	106
82	Dysregulation of Dopamine Transporters via Dopamine D ₂ Autoreceptors Triggers Anomalous Dopamine Efflux Associated with Attention-Deficit Hyperactivity Disorder. Journal of Neuroscience, 2010, 30, 6048-6057.	3.6	105
83	Single-molecule FRET imaging of GPCR dimers in living cells. Nature Methods, 2021, 18, 397-405.	19.0	104
84	Regulation of Dopamine Transporter Function and Cell Surface Expression by D3 Dopamine Receptors. Journal of Biological Chemistry, 2007, 282, 35842-35854.	3.4	101
85	Evidence against dopamine D1/D2 receptor heteromers. Molecular Psychiatry, 2015, 20, 1373-1385.	7.9	100
86	What Can Crystal Structures of Aminergic Receptors Tell Us about Designing Subtype-Selective Ligands?. Pharmacological Reviews, 2015, 67, 198-213.	16.0	99
87	Mechanisms of amphetamine action illuminated through optical monitoring of dopamine synaptic vesicles in Drosophila brain. Nature Communications, 2016, 7, 10652.	12.8	97
88	[3H]mazindol binding associated with neuronal dopamine uptake sites in corpus striatum membranes. European Journal of Pharmacology, 1983, 90, 461-462.	3.5	96
89	6′-Guanidinonaltrindole (6′-GNTI) Is a G Protein-biased κ-Opioid Receptor Agonist That Inhibits Arrestin Recruitment. Journal of Biological Chemistry, 2012, 287, 27050-27054.	3.4	96
90	Antipsychotic drug mechanisms: links between therapeutic effects, metabolic side effects and the insulin signaling pathway. Molecular Psychiatry, 2008, 13, 918-929.	7.9	95

#	Article	IF	CITATIONS
91	Peroxynitrite Inactivates the Human Dopamine Transporter by Modification of Cysteine 342: Potential Mechanism of Neurotoxicity in Dopamine Neurons. Journal of Neuroscience, 2002, 22, 4399-4405.	3.6	94
92	The Uptake Inhibitors Cocaine and Benztropine Differentially Alter the Conformation of the Human Dopamine Transporter. Journal of Biological Chemistry, 2001, 276, 29012-29018.	3.4	93
93	Dopamine D4/D2 Receptor Selectivity Is Determined by A Divergent Aromatic Microdomain Contained within the Second, Third, and Seventh Membrane-Spanning Segments. Molecular Pharmacology, 1999, 56, 1116-1126.	2.3	92
94	The Ants Go Marching Two by Two: Oligomeric Structure of G-Protein-Coupled Receptors. Molecular Pharmacology, 2004, 66, 1077-1082.	2.3	92
95	Accumbens dopamine D2 receptors increase motivation by decreasing inhibitory transmission to the ventral pallidum. Nature Communications, 2018, 9, 1086.	12.8	92
96	Synergistic Contributions of the Functional Groups of Epinephrine to Its Affinity and Efficacy at the β2Adrenergic Receptor. Molecular Pharmacology, 2004, 65, 1181-1190.	2.3	89
97	Intracellular Ca2+Regulates Amphetamine-Induced Dopamine Efflux and Currents Mediated by the Human Dopamine Transporter. Molecular Pharmacology, 2004, 66, 137-143.	2.3	89
98	State-dependent Conformations of the Translocation Pathway in the Tyrosine Transporter Tyt1, a Novel Neurotransmitter:Sodium Symporter from Fusobacterium nucleatum. Journal of Biological Chemistry, 2006, 281, 26444-26454.	3.4	88
99	Characterization of a Functional Bacterial Homologue of Sodium-dependent Neurotransmitter Transporters. Journal of Biological Chemistry, 2003, 278, 12703-12709.	3.4	86
100	Identification of Intracellular Residues in the Dopamine Transporter Critical for Regulation of Transporter Conformation and Cocaine Binding. Journal of Biological Chemistry, 2004, 279, 3228-3238.	3.4	85
101	Amphetamine Regulation of Dopamine Transport. Journal of Biological Chemistry, 2004, 279, 8966-8975.	3.4	85
102	Chloride binding site of neurotransmitter sodium symporters. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 8489-8494.	7.1	85
103	Experimental conditions can obscure the second high-affinity site in LeuT. Nature Structural and Molecular Biology, 2012, 19, 207-211.	8.2	84
104	G Protein-coupled Receptor Kinase-mediated Phosphorylation Regulates Post-endocytic Trafficking of the D2 Dopamine Receptor. Journal of Biological Chemistry, 2009, 284, 15038-15051.	3.4	83
105	Dual agonist occupancy of AT1-R–α2C-AR heterodimers results in atypical Gs-PKA signaling. Nature Chemical Biology, 2015, 11, 271-279.	8.0	83
106	Surface Targeting of the Dopamine Transporter Involves Discrete Epitopes in the Distal C Terminus But Does Not Require Canonical PDZ Domain Interactions. Journal of Neuroscience, 2004, 24, 7024-7036.	3.6	82
107	Crystal structure of a phosphorylation-coupled saccharide transporter. Nature, 2011, 473, 50-54.	27.8	77
108	GPCR-OKB: the G Protein Coupled Receptor Oligomer Knowledge Base. Bioinformatics, 2010, 26, 1804-1805.	4.1	74

#	Article	IF	CITATIONS
109	Dopamine-Mediated Autocrine Inhibitory Circuit Regulating Human Insulin Secretion in Vitro. Molecular Endocrinology, 2012, 26, 1757-1772.	3.7	74
110	CrossTalk opposing view: Weighing the evidence for classÂA GPCR dimers, the jury is still out. Journal of Physiology, 2014, 592, 2443-2445.	2.9	74
111	Discovery and Characterization of a G Protein–Biased Agonist That Inhibits <i>β</i> -Arrestin Recruitment to the D2 Dopamine Receptor. Molecular Pharmacology, 2014, 86, 96-105.	2.3	74
112	Impact of D2 Receptor Internalization on Binding Affinity of Neuroimaging Radiotracers. Neuropsychopharmacology, 2010, 35, 806-817.	5.4	71
113	Electrostatic and Aromatic Microdomains within the Binding-Site Crevice of the D2 Receptor:Â Contributions of the Second Membrane-Spanning Segmentâ€. Biochemistry, 1999, 38, 7961-7968.	2.5	70
114	Recruitment of \hat{I}^2 -arrestin2 to the dopamine D2 receptor: Insights into anti-psychotic and anti-parkinsonian drug receptor signaling. Neuropharmacology, 2008, 54, 1215-1222.	4.1	70
115	Making Structural Sense of Dimerization Interfaces of Delta Opioid Receptor Homodimers. Biochemistry, 2011, 50, 1682-1690.	2.5	70
116	Neuronal Depolarization Drives Increased Dopamine Synaptic Vesicle Loading via VGLUT. Neuron, 2017, 95, 1074-1088.e7.	8.1	69
117	G Protein-coupled Receptor Kinase-2 Constitutively Regulates D2 Dopamine Receptor Expression and Signaling Independently of Receptor Phosphorylation. Journal of Biological Chemistry, 2009, 284, 34103-34115.	3.4	67
118	Regulation of Dopamine Transporter Trafficking by Intracellular Amphetamine. Molecular Pharmacology, 2006, 70, 542-548.	2.3	66
119	The Fourth Transmembrane Segment of the Dopamine D2 Receptor:  Accessibility in the Binding-Site Crevice and Position in the Transmembrane Bundle. Biochemistry, 2000, 39, 12190-12199.	2.5	65
120	Optical Control of Dopamine Receptors Using a Photoswitchable Tethered Inverse Agonist. Journal of the American Chemical Society, 2017, 139, 18522-18535.	13.7	63
121	Dopamine Receptor Activation Increases HIV Entry into Primary Human Macrophages. PLoS ONE, 2014, 9, e108232.	2.5	63
122	Currents in Response to Rapid Concentration Jumps of Amphetamine Uncover Novel Aspects of Human Dopamine Transporter Function. Journal of Neuroscience, 2008, 28, 976-989.	3.6	61
123	A Juxtamembrane Mutation in the N Terminus of the Dopamine Transporter Induces Preference for an Inward-Facing Conformation. Molecular Pharmacology, 2009, 75, 514-524.	2.3	61
124	Structure and functional interaction of the extracellular domain of human GABAB receptor GBR2. Nature Neuroscience, 2012, 15, 970-978.	14.8	61
125	The First Transmembrane Segment of the Dopamine D2 Receptor:Â Accessibility in the Binding-Site Crevice and Position in the Transmembrane Bundle. Biochemistry, 2001, 40, 12339-12348.	2.5	60
126	Substrate-dependent proton antiport in neurotransmitter:sodium symporters. Nature Chemical Biology, 2010, 6, 109-116.	8.0	59

#	Article	IF	CITATIONS
127	Imaging the high-affinity state of the dopamine D2 receptor in vivo: Fact or fiction?. Biochemical Pharmacology, 2012, 83, 193-198.	4.4	59
128	Structure of human GABAB receptor in an inactive state. Nature, 2020, 584, 304-309.	27.8	59
129	Discovery of a Novel Selective Kappa-Opioid Receptor Agonist Using Crystal Structure-Based Virtual Screening. Journal of Chemical Information and Modeling, 2013, 53, 521-526.	5.4	58
130	A Single Glycine in Extracellular Loop 1 Is the Critical Determinant for Pharmacological Specificity of Dopamine D2 and D3 Receptors. Molecular Pharmacology, 2013, 84, 854-864.	2.3	58
131	Mechanism of the Association between Na+ Binding and Conformations at the Intracellular Gate in Neurotransmitter:Sodium Symporters. Journal of Biological Chemistry, 2015, 290, 13992-14003.	3.4	58
132	Electronic tuning of self-healing fluorophores for live-cell and single-molecule imaging. Chemical Science, 2017, 8, 755-762.	7.4	58
133	Cannabinoid CB1 and CB2 Receptor-Mediated Arrestin Translocation: Species, Subtype, and Agonist-Dependence. Frontiers in Pharmacology, 2019, 10, 350.	3.5	58
134	The Tetrahydroisoquinoline Derivative SB269,652 Is an Allosteric Antagonist at Dopamine D ₃ and D ₂ Receptors. Molecular Pharmacology, 2010, 78, 925-934.	2.3	57
135	Mechanisms of inverse agonism of antipsychotic drugs at the D2 dopamine receptor: use of a mutant D2 dopamine receptor that adopts the activated conformation. Journal of Neurochemistry, 2001, 77, 493-504.	3.9	56
136	Presynaptic Regulation of Dopamine Transmission in Schizophrenia. Schizophrenia Bulletin, 2011, 37, 108-117.	4.3	56
137	Transport-dependent Accessibility of a Cytoplasmic Loop Cysteine in the Human Dopamine Transporter. Journal of Biological Chemistry, 2000, 275, 1608-1614.	3.4	55
138	New roles for dopamine D2 and D3 receptors in pancreatic beta cell insulin secretion. Molecular Psychiatry, 2020, 25, 2070-2085.	7.9	55
139	Arrestin recruitment to dopamine D2 receptor mediates locomotion but not incentive motivation. Molecular Psychiatry, 2020, 25, 2086-2100.	7.9	55
140	Use of the substituted cysteine accessibility method to study the structure and function of G protein-coupled receptors. Methods in Enzymology, 2002, 343, 137-156.	1.0	53
141	Regional Heterogeneity of D2-Receptor Signaling in the Dorsal Striatum and Nucleus Accumbens. Neuron, 2018, 98, 575-587.e4.	8.1	52
142	Genetically Targeted Optical Control of an Endogenous G Protein-Coupled Receptor. Journal of the American Chemical Society, 2019, 141, 11522-11530.	13.7	51
143	Cortical overgrowth in a preclinical forebrain organoid model of CNTNAP2-associated autism spectrum disorder. Nature Communications, 2021, 12, 4087.	12.8	51
144	Development and Antiparkinsonian Activity of VU0418506, a Selective Positive Allosteric Modulator of Metabotropic Glutamate Receptor 4 Homomers without Activity at mGlu _{2/4} Heteromers. ACS Chemical Neuroscience, 2016, 7, 1201-1211.	3.5	50

#	Article	IF	CITATIONS
145	Cholinergic Agonists as Novel Treatments for Schizophrenia: The Promise of Rational Drug Development for Psychiatry. American Journal of Psychiatry, 2008, 165, 931-936.	7.2	49
146	Toward Understanding the Structural Basis of Partial Agonism at the Dopamine D ₃ Receptor. Journal of Medicinal Chemistry, 2017, 60, 580-593.	6.4	49
147	InÂvivo variation in same-day estimates of metabotropic glutamate receptor subtype 5 binding using [¹¹ C]ABP688 and [¹⁸ F]FPEB. Journal of Cerebral Blood Flow and Metabolism, 2017, 37, 2716-2727.	4.3	49
148	[23] Probing structure of neurotransmitter transporters by substituted-cysteine accessibility method. Methods in Enzymology, 1998, 296, 331-346.	1.0	47
149	Potentiating SLC transporter activity: Emerging drug discovery opportunities. Biochemical Pharmacology, 2017, 135, 1-11.	4.4	47
150	Metabotropic Glutamate Receptor 5 and Glutamate Involvement in Major Depressive Disorder: A Multimodal Imaging Study. Biological Psychiatry: Cognitive Neuroscience and Neuroimaging, 2017, 2, 449-456.	1.5	47
151	High Affinity Dopamine D ₃ Receptor (D ₃ R)-Selective Antagonists Attenuate Heroin Self-Administration in Wild-Type but not D ₃ R Knockout Mice. Journal of Medicinal Chemistry, 2015, 58, 6195-6213.	6.4	45
152	GPCR-mediated \hat{l}^2 -arrestin activation deconvoluted with single-molecule precision. Cell, 2022, 185, 1661-1675.e16.	28.9	43
153	A pincer-like configuration of TM2 in the human dopamine transporter is responsible for indirect effects on cocaine binding. Neuropharmacology, 2005, 49, 780-790.	4.1	42
154	Requirements and ontology for a G protein-coupled receptor oligomerization knowledge base. BMC Bioinformatics, 2007, 8, 177.	2.6	42
155	Ribosome-associated vesicles: A dynamic subcompartment of the endoplasmic reticulum in secretory cells. Science Advances, 2020, 6, eaay9572.	10.3	42
156	Using Bioluminescence Resonance Energy Transfer (BRET) to Characterize Agonistâ€Induced Arrestin Recruitment to Modified and Unmodified G Proteinâ€Coupled Receptors. Current Protocols in Pharmacology, 2015, 70, 2.14.1-2.14.14.	4.0	41
157	G12/13 is activated by acute tethered agonist exposure in the adhesion GPCR ADGRL3. Nature Chemical Biology, 2020, 16, 1343-1350.	8.0	41
158	How did the neurotransmitter cross the bilayer? A closer view. Current Opinion in Neurobiology, 2005, 15, 296-304.	4.2	40
159	A partially-open inward-facing intermediate conformation of LeuT is associated with Na+ release and substrate transport. Nature Communications, 2018, 9, 230.	12.8	40
160	Controlling opioid receptor functional selectivity by targeting distinct subpockets of the orthosteric site. ELife, 2021, 10, .	6.0	40
161	Structureâ^'Activity Relationships for a Novel Series of Citalopram (1-(3-(Dimethylamino)propyl)-1-(4-fluorophenyl)-1,3-dihydroisobenzofuran-5-carbonitrile) Analogues at Monoamine Transporters. Journal of Medicinal Chemistry, 2010, 53, 6112-6121.	6.4	39
162	Do Toxic Synthetic Cannabinoid Receptor Agonists Have Signature in Vitro Activity Profiles? A Case Study of AMB-FUBINACA. ACS Chemical Neuroscience, 2019, 10, 4350-4360.	3.5	39

#	Article	IF	CITATIONS
163	Probing conformational changes in neurotransmitter transporters: a structural context. European Journal of Pharmacology, 2003, 479, 3-12.	3.5	38
164	Upregulation of Dopamine D2 Receptors in the Nucleus Accumbens Indirect Pathway Increases Locomotion but Does Not Reduce Alcohol Consumption. Neuropsychopharmacology, 2015, 40, 1609-1618.	5.4	38
165	Gs-Âversus Golf-dependent functional selectivity mediated by the dopamine D1 receptor. Nature Communications, 2018, 9, 486.	12.8	38
166	Come Fly with Me: An overview of dopamine receptors in <i>Drosophila melanogaster</i> . Basic and Clinical Pharmacology and Toxicology, 2020, 126, 56-65.	2.5	38
167	Quantifying secondary transport at single-molecule resolution. Nature, 2019, 575, 528-534.	27.8	37
168	Dopamine D2 Receptors in the Paraventricular Thalamus Attenuate Cocaine Locomotor Sensitization. ENeuro, 2017, 4, ENEURO.0227-17.2017.	1.9	37
169	Zn2+site engineering at the oligomeric interface of the dopamine transporter. FEBS Letters, 2002, 524, 87-91.	2.8	36
170	PI3K signaling supports amphetamine-induced dopamine efflux. Biochemical and Biophysical Research Communications, 2008, 372, 656-661.	2.1	36
171	Dopamine D2 receptor overexpression in the nucleus accumbens core induces robust weight loss during scheduled fasting selectively in female mice. Molecular Psychiatry, 2021, 26, 3765-3777.	7.9	35
172	Tuning the Baird aromatic triplet-state energy of cyclooctatetraene to maximize the self-healing mechanism in organic fluorophores. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 24305-24315.	7.1	35
173	Agonist-induced formation of unproductive receptor-G ₁₂ complexes. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 21723-21730.	7.1	35
174	Signalling profiles of a structurally diverse panel of synthetic cannabinoid receptor agonists. Biochemical Pharmacology, 2020, 175, 113871.	4.4	35
175	X-ray structure of LeuT in an inward-facing occluded conformation reveals mechanism of substrate release. Nature Communications, 2020, 11, 1005.	12.8	34
176	Chloroethylclonidine and 2-Aminoethyl Methanethiosulfonate Recognize Two Different Conformations of the Human α2A-Adrenergic Receptor. Journal of Biological Chemistry, 1999, 274, 21867-21872.	3.4	33
177	Novel Analogues of (<i>R</i>)-5-(Methylamino)-5,6-dihydro-4 <i>H</i> -imidazo[4,5,1- <i>ij</i>]quinolin-2(1 <i>H</i>)-one (Sumanirole) Provide Clues to Dopamine D ₂ /D ₃ Receptor Agonist Selectivity. Iournal of Medicinal Chemistry. 2016. 59. 2973-2988.	6.4	33
178	A Novel Mitragynine Analog with Low-Efficacy Mu Opioid Receptor Agonism Displays Antinociception with Attenuated Adverse Effects. Journal of Medicinal Chemistry, 2021, 64, 13873-13892.	6.4	33
179	The Conserved Cysteine 7.38 Residue Is Differentially Accessible in the Binding-Site Crevices of the μ, δ, and κ Opioid Receptorsâ€. Biochemistry, 2000, 39, 13904-13915.	2.5	32
180	Comparison of the Amino Acid Residues in the Sixth Transmembrane Domains Accessible in the Binding-Site Crevices of μ, δ, and κ Opioid Receptors. Biochemistry, 2001, 40, 8018-8029.	2.5	32

#	Article	IF	CITATIONS
181	The Membrane Protein LeuT in Micellar Systems: Aggregation Dynamics and Detergent Binding to the S2 Site. Journal of the American Chemical Society, 2013, 135, 14266-14275.	13.7	32
182	Mutation of Three Residues in the Third Intracellular Loop of the Dopamine D2 Receptor Creates an Internalization-defective Receptor. Journal of Biological Chemistry, 2014, 289, 33663-33675.	3.4	32
183	Substrate-induced Unlocking of the Inner Gate Determines the Catalytic Efficiency of a Neurotransmitter:Sodium Symporter. Journal of Biological Chemistry, 2015, 290, 26725-26738.	3.4	32
184	Distinct inactive conformations of the dopamine D2 and D3 receptors correspond to different extents of inverse agonism. ELife, 2020, 9, .	6.0	31
185	Yohimbine Depresses Excitatory Transmission in BNST and Impairs Extinction of Cocaine Place Preference Through Orexin-Dependent, Norepinephrine-Independent Processes. Neuropsychopharmacology, 2012, 37, 2253-2266.	5.4	29
186	Akt-Dependent and Isoform-Specific Regulation of Dopamine Transporter Cell Surface Expression. ACS Chemical Neuroscience, 2010, 1, 476-481.	3.5	28
187	Evidence for limited D1 and D2 receptor coexpression and colocalization within the dorsal striatum of the neonatal mouse. Journal of Comparative Neurology, 2015, 523, 1175-1189.	1.6	27
188	Development of a Rapid Insulin Assay by Homogenous Time-Resolved Fluorescence. PLoS ONE, 2016, 11, e0148684.	2.5	27
189	Segregation of Family A G Protein–Coupled Receptor Protomers in the Plasma Membrane. Molecular Pharmacology, 2013, 84, 346-352.	2.3	26
190	The structural determinants of the bitopic binding mode of a negative allosteric modulator of the dopamine D 2 receptor. Biochemical Pharmacology, 2018, 148, 315-328.	4.4	26
191	Role of Tau Protein in Remodeling of Circadian Neuronal Circuits and Sleep. Frontiers in Aging Neuroscience, 2019, 11, 320.	3.4	26
192	Dopamine Prevents Nitration of Tyrosine Hydroxylase by Peroxynitrite and Nitrogen Dioxide. Journal of Biological Chemistry, 2003, 278, 28736-28742.	3.4	25
193	Site selective C–H functionalization of Mitragyna alkaloids reveals a molecular switch for tuning opioid receptor signaling efficacy. Nature Communications, 2021, 12, 3858.	12.8	25
194	Two allelic isoforms of the serotonin transporter from Schistosoma mansoni display electrogenic transport and high selectivity for serotonin. European Journal of Pharmacology, 2009, 616, 48-57.	3.5	23
195	The allosteric mechanism of substrate-specific transport in SLC6 is mediated by a volumetric sensor. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 15947-15956.	7.1	23
196	Conformational Dynamics on the Extracellular Side of LeuT Controlled by Na+ and K+ Ions and the Protonation State of Glu290. Journal of Biological Chemistry, 2016, 291, 19786-19799.	3.4	22
197	Characterization of in vivo Pharmacokinetic Properties of the Dopamine D1 Receptor Agonist DAR-0100A in Nonhuman Primates Using PET with [11C] NNC112 and [11C] Raclopride. Journal of Cerebral Blood Flow and Metabolism, 2011, 31, 293-304.	4.3	21
198	The role of transmembrane segment 5 (TM5) in Na2 release and the conformational transition of neurotransmitter:sodium symporters toward the inward-open state. Journal of Biological Chemistry, 2017, 292, 7372-7384.	3.4	21

Jonathan A Javitch

#	Article	IF	CITATIONS
199	The LeuT-fold neurotransmitter:sodium symporter MhsT has two substrate sites. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E7924-E7931.	7.1	21
200	How changes in dopamine D2 receptor levels alter striatal circuit function and motivation. Molecular Psychiatry, 2022, 27, 436-444.	7.9	21
201	Molecular Determinants of the Intrinsic Efficacy of the Antipsychotic Aripiprazole. ACS Chemical Biology, 2019, 14, 1780-1792.	3.4	19
202	New phosphosite-specific antibodies to unravel the role of GRK phosphorylation in dopamine D2 receptor regulation and signaling. Scientific Reports, 2021, 11, 8288.	3.3	19
203	The E2.65A mutation disrupts dynamic binding poses of SB269652 at the dopamine D2 and D3 receptors. PLoS Computational Biology, 2018, 14, e1005948.	3.2	19
204	The differential actions of clozapine and other antipsychotic drugs on the translocation of dopamine D2 receptors to the cell surface. Journal of Biological Chemistry, 2019, 294, 5604-5615.	3.4	18
205	A nonâ€helical region in transmembrane helix 6 of hydrophobic amino acid transporter MhsT mediates substrate recognition. EMBO Journal, 2021, 40, e105164.	7.8	18
206	Dopamine D2 receptors modulate the cholinergic pause and inhibitory learning. Molecular Psychiatry, 2022, 27, 1502-1514.	7.9	18
207	Differential visualization of dopamine D2 and D3 receptors in rat brain. European Journal of Pharmacology, 1993, 234, 269-272.	3.5	16
208	The action of a negative allosteric modulator at the dopamine D2 receptor is dependent upon sodium ions. Scientific Reports, 2018, 8, 1208.	3.3	16
209	Disrupting D1-NMDA or D2-NMDA receptor heteromerization prevents cocaine's rewarding effects but preserves natural reward processing. Science Advances, 2021, 7, eabg5970.	10.3	16
210	Mapping the Binding-Site Crevice of the D2 Receptor. Advances in Pharmacology, 1997, 42, 412-415.	2.0	14
211	Development of novel biosensors to study receptor-mediated activation of the G-protein α subunits Gs and Golf. Journal of Biological Chemistry, 2017, 292, 19989-19998.	3.4	14
212	Input-specific regulation of glutamatergic synaptic transmission in the medial prefrontal cortex by mGlu ₂ /mGlu ₄ receptor heterodimers. Science Signaling, 2021, 14, .	3.6	14
213	Conformational changes in dopamine transporter intracellular regions upon cocaine binding and dopamine translocation. Neurochemistry International, 2014, 73, 4-15.	3.8	13
214	Phosphorylation of the Amino Terminus of the Dopamine Transporter: Regulatory Mechanisms and Implications for Amphetamine Action. Advances in Pharmacology, 2018, 82, 205-234.	2.0	13
215	Measuring the effects of ketamine on mGluR5 using [¹⁸ F]FPEB and PET. Journal of Cerebral Blood Flow and Metabolism, 2020, 40, 2254-2264.	4.3	13
216	Rebuttal from Nevin A. Lambert and Jonathan A. Javitch. Journal of Physiology, 2014, 592, 2449-2449.	2.9	12

#	Article	IF	CITATIONS
217	Role of Annular Lipids in the Functional Properties of Leucine Transporter LeuT Proteomicelles. Biochemistry, 2016, 55, 850-859.	2.5	12
218	Luciferase complementation based-detection of G-protein-coupled receptor activity. BioTechniques, 2018, 65, 9-14.	1.8	12
219	Novel Fluorescent Ligands Enable Single-Molecule Localization Microscopy of the Dopamine Transporter. ACS Chemical Neuroscience, 2020, 11, 3288-3300.	3.5	12
220	Mu opioid receptors on hippocampal GABAergic interneurons are critical for the antidepressant effects of tianeptine. Neuropsychopharmacology, 2022, 47, 1387-1397.	5.4	12
221	A novel luminescence-based \hat{l}^2 -arrestin recruitment assay for unmodified receptors. Journal of Biological Chemistry, 2021, 296, 100503.	3.4	12
222	[3H]MFZ 2-12: A Novel Radioligand for the Dopamine Transporter. Bioorganic and Medicinal Chemistry Letters, 2001, 11, 1659-1661.	2.2	11
223	Intramolecular cross-linking in a bacterial homolog of mammalian SLC6 neurotransmitter transporters suggests an evolutionary conserved role of transmembrane segments 7 and 8. Neuropharmacology, 2005, 49, 715-723.	4.1	11
224	Dopamine D1R Receptor Stimulation as a Mechanistic Pro-cognitive Target for Schizophrenia. Schizophrenia Bulletin, 2022, 48, 199-210.	4.3	11
225	Exploring the Binding Site Crevice of a Family B G Protein-Coupled Receptor, the Type 1 Corticotropin Releasing Factor Receptor. Molecular Pharmacology, 2010, 78, 785-793.	2.3	10
226	Crystal structures of LeuT reveal conformational dynamics in the outward-facing states. Journal of Biological Chemistry, 2021, 296, 100609.	3.4	10
227	The respiratory depressant effects of mitragynine are limited by its conversion to 7â€OH mitragynine. British Journal of Pharmacology, 2022, 179, 3875-3885.	5.4	10
228	Detecting G protein-coupled receptor complexes in postmortem human brain with proximity ligation assay and a Bayesian classifier. BioTechniques, 2020, 68, 122-129.	1.8	9
229	The Substituted ysteine Accessibility Method (SCAM) to Elucidate Membrane Protein Structure. Current Protocols in Neuroscience, 1999, 8, Unit 4.15.	2.6	8
230	A Role for Information Collection, Management, and Integration in Structure-Function Studies of G-Protein Coupled Receptors. Current Pharmaceutical Design, 2006, 12, 1771-1783.	1.9	8
231	Delineating the interactions between the cannabinoid CB ₂ receptor and its regulatory effectors; l²â€arrestins and GPCR kinases. British Journal of Pharmacology, 2022, 179, 2223-2239.	5.4	8
232	Phospho-specific antibodies targeting the amino terminus of the human dopamine transporter. Journal of Chemical Neuroanatomy, 2017, 83-84, 91-98.	2.1	7
233	OZITX, a pertussis toxin-like protein for occluding inhibitory G protein signalling including Gαz. Communications Biology, 2022, 5, 256.	4.4	7
234	Small Flies Meet Big Data: Genetic Convergence of Neurodevelopmental Disorders Modeled in <i>Drosophila</i> . American Journal of Psychiatry, 2020, 177, 482-484.	7.2	6

#	Article	IF	CITATIONS
235	The Role of the Dopamine Transporter in the Effects of Amphetamine on Sleep and Sleep Architecture in Drosophila. Neurochemical Research, 2022, 47, 177-189.	3.3	6
236	Detection of G Protein oupled Receptor Complexes in Postmortem Human Brain by Proximity Ligation Assay. Current Protocols in Neuroscience, 2020, 91, e86.	2.6	5
237	Oligomerization Domains of G Protein-Coupled Receptors. Contemporary Clinical Neuroscience, 2005, , 243-265.	0.3	4
238	Drs. Lieberman, Javitch, and Moore Reply. American Journal of Psychiatry, 2009, 166, 111-113.	7.2	4
239	Exploring Substrate Binding in the Extracellular Vestibule of MhsT by Atomistic Simulations and Markov Models. Journal of Chemical Information and Modeling, 2018, 58, 1244-1252.	5.4	4
240	Encephalopathy-causing mutations in Gβ1 (GNB1) alter regulation of neuronal GIRK channels. IScience, 2021, 24, 103018.	4.1	4
241	Structural Basis of Dopamine Receptor Activation. , 2010, , 47-73.		4
242	Extreme Vetting of Dopamine Receptor Oligomerization. , 2017, , 99-127.		3
243	Synthesis and pharmacological evaluation of bivalent tethered ligands to target the mGlu2/4 heterodimeric receptor results in a compound with mGlu2/2 homodimer selectivity. Bioorganic and Medicinal Chemistry Letters, 2020, 30, 127212.	2.2	3
244	Assays for detecting arrestin interaction with GPCRs. Methods in Cell Biology, 2021, 166, 43-65.	1.1	3
245	Reply to â€~Antipsychotics with similar association kinetics at dopamine D2 receptors differ in extrapyramidal side-effects'. Nature Communications, 2018, 9, 3568.	12.8	2
246	Tianeptine, but not fluoxetine, decreases avoidant behavior in a mouse model of early developmental exposure to fluoxetine. Scientific Reports, 2021, 11, 22852.	3.3	2
247	TRAC: A Platform for Structure-Function Studies of NSS-Proteins Integrates Information from Bioinformatics and Biomedical Literature. , 2010, , .		1
248	Sensing conformational changes in metabotropic glutamate receptors. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 5742-5743.	7.1	1
249	Conformational Plasticity of GPCR Binding Sites. Contemporary Clinical Neuroscience, 2005, , 363-388.	0.3	1
250	A Structural Context for Studying Neurotransmitter Transporter Function. , 2004, , 213-234.		1
251	Getting to grips with ammonium. ELife, 2013, 2, e01029.	6.0	1
252	Functional Genomic Analysis of Amphetamine Sensitivity in Drosophila. Frontiers in Psychiatry, 2022, 13, 831597.	2.6	1

#	Article	IF	CITATIONS
253	Finding needles in haystacks. Nature Biotechnology, 2004, 22, 394-396.	17.5	0
254	Chapter 12. Crosstalk Between Receptors: Challenges of Distinguishing Upstream from Downstream Mechanisms. RSC Drug Discovery Series, 2011, , 255-268.	0.3	0
255	Cross-Talk between G Protein-Coupled Receptors. , 2014, , 93-94.		0
256	The Binding Pocket of G-Protein-Coupled Receptors for Biogenic Amines, Retinal, and Other Ligands. , 2003, , 155-160.		0
257	Transmembrane five effects on functional selectivity at the dopamine D2L receptor. FASEB Journal, 2006, 20, A246.	0.5	0
258	Identification of intracellular residues in the dopamine transporter critical for regulation of transporter conformation and cocaine binding. VOLUME 279 (2004) PAGES 3228-3238. Journal of Biological Chemistry, 2006, 281, 25867-25868.	3.4	0
259	Lipid rafts and membrane cholesterol are involved in regulating D2 dopamine receptor signaling. FASEB Journal, 2010, 24, 584.1.	0.5	0
260	Towards Better Understanding of G(s) Coupling in Catecholamine Receptors. , 2014, , 89-90.		0
261	The Membrane-Raft Protein Flotillin-1 is Essential in Dopamine Neurons for Amphetamine-Induced Behavior in Drosophila. , 2014, , 58.		0
262	Drug Design for Addiction – Molecular Determinants of Selectivity and Efficacy at the Dopamine D3 Receptor. , 2014, , 181-182.		0
263	Deciphering the Functionally Selective Properties of D2R Ligands. , 2014, , 110.		0
264	High-Throughput Screening for Modulators of the D2 Dopamine Receptor Yields Unique and Selective Pharmacological Chemotypes. , 2014, , 115.		0
265	Imaging Functional Dynamic Processes within Integral Membrane Proteins at the Singleâ€Molecule Scale. FASEB Journal, 2015, 29, 498.3.	0.5	0
266	Illness Phase as a Key Assessment and Intervention Window for Psychosis. Biological Psychiatry Global Open Science, 2022, , .	2.2	0