Alexis Lycourghiotis

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11466804/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Advanced Synthesis and Characterization of Vanadia/Titania Catalysts through a Molecular Approach. Catalysts, 2021, 11, 322.	3.5	4
2	W promoted Ni-Al2O3 co-precipitated catalysts for green diesel production. Fuel Processing Technology, 2021, 217, 106820.	7.2	16
3	Cobalt–Alumina Coprecipitated Catalysts for Green Diesel Production. Industrial & Engineering Chemistry Research, 2021, 60, 18672-18683.	3.7	9
4	Green diesel production over nickel-alumina nanostructured catalysts promoted by zinc. Catalysis Today, 2020, 355, 903-909.	4.4	24
5	Waste cooking oil transformation into third generation green diesel catalyzed by nickel – Alumina catalysts. Molecular Catalysis, 2020, 482, 110697.	2.0	20
6	Green Diesel Production over Nickel-Alumina Nanostructured Catalysts Promoted by Copper. Energies, 2020, 13, 3707.	3.1	19
7	Decolorization of Orange-G Aqueous Solutions over C60/MCM-41 Photocatalysts. Applied Sciences (Switzerland), 2019, 9, 1958.	2.5	12
8	Developing Nickel–Zirconia Co-Precipitated Catalysts for Production of Green Diesel. Catalysts, 2019, 9, 210.	3.5	31
9	Mo promoted Ni-Al2O3 co-precipitated catalysts for green diesel production. Applied Catalysis B: Environmental, 2018, 229, 139-154.	20.2	101
10	Green diesel production over nickel-alumina co-precipitated catalysts. Applied Catalysis A: General, 2017, 536, 45-56.	4.3	86
11	Probing the synergistic ratio of the NiMo/γ-Al 2 O 3 reduced catalysts for the transformation of natural triglycerides into green diesel. Applied Catalysis B: Environmental, 2017, 209, 12-22.	20.2	83
12	Optimization of the synthesis technique of molybdenum sulfide catalysts supported on titania for the hydrodesulfurization of thiophene. Reaction Kinetics, Mechanisms and Catalysis, 2017, 120, 527-541.	1.7	1
13	Ni Catalysts Supported on Modified Alumina for Diesel Steam Reforming. Catalysts, 2016, 6, 11.	3.5	36
14	Molybdena deposited on titania by equilibrium deposition filtration: structural evolution of oxo–molybdenum(<scp>vi</scp>) sites with temperature. Physical Chemistry Chemical Physics, 2016, 18, 23980-23989.	2.8	17
15	Preparation of un-promoted molybdenum HDS catalysts supported on titania by equilibrium deposition filtration: Optimization of the preparative parameters and investigation of the promoting action of titania. Journal of Molecular Catalysis A, 2016, 412, 1-12.	4.8	20
16	Development of nickel based catalysts for the transformation of natural triglycerides and related compounds into green diesel: a critical review. Applied Catalysis B: Environmental, 2016, 181, 156-196.	20.2	221
17	Comparative study of phase transition and textural changes upon calcination of two commercial titania samples: A pure anatase and a mixed anatase-rutile. Journal of Solid State Chemistry, 2015, 232, 42-49.	2.9	25
18	The mechanism of azo-dyes adsorption on the titanium dioxide surface and their photocatalytic degradation over samples with various anatase/rutile ratios. Catalysis Today, 2015, 252, 128-135.	4.4	99

#	Article	IF	CITATIONS
19	Temperature-Dependent Evolution of the Molecular Configuration of Oxo-Tungsten(VI) Species Deposited on the Surface of Titania. Journal of Physical Chemistry C, 2014, 118, 11319-11332.	3.1	18
20	Titanium Dioxide (Anatase and Rutile): Surface Chemistry, Liquid–Solid Interface Chemistry, and Scientific Synthesis of Supported Catalysts. Chemical Reviews, 2014, 114, 9754-9823.	47.7	295
21	Deposition of fullerene C60 on the surface of MCM-41 via the one-step wet impregnation method: Active catalysts for the singlet oxygen mediated photooxidation of alkenes. Journal of Molecular Catalysis A, 2014, 381, 9-15.	4.8	16
22	Transformation of α-limonene into p-cymene over oxide catalysts: A green chemistry approach. Applied Catalysis A: General, 2014, 474, 224-229.	4.3	36
23	Nano-Tubular Cellulose for Bioprocess Technology Development. PLoS ONE, 2012, 7, e34350.	2.5	57
24	Highly active catalysts for the photooxidation of organic compounds by deposition of [60] fullerene onto the MCM-41 surface: A green approach for the synthesis of fine chemicals. Applied Catalysis B: Environmental, 2012, 117-118, 36-48.	20.2	22
25	Interfacial Impregnation Chemistry in the Synthesis of Chromium Catalysts Supported on Titania. ChemCatChem, 2011, 3, 1072-1082.	3.7	11
26	Interfacial Impregnation Chemistry in the Synthesis of Nickel Catalysts Supported on Titania. Chemistry - A European Journal, 2011, 17, 1201-1213.	3.3	13
27	Hydrodesulfurization catalyst bodies with various Co and Mo profiles. Applied Catalysis A: General, 2011, 399, 211-220.	4.3	13
28	Î ³ -Alumina-supported [60]fullerene catalysts: Synthesis, properties and applications in the photooxidation of alkenes. Journal of Molecular Catalysis A, 2010, 316, 65-74.	4.8	25
29	Development of [60] fullerene supported on silica catalysts for the photo-oxidation of alkenes. Applied Catalysis A: General, 2010, 372, 16-25.	4.3	21
30	CoMo/Al2O3-SiO2 catalysts prepared by co-equilibrium deposition filtration: Characterization and catalytic behavior for the hydrodesulphurization of thiophene. Applied Catalysis B: Environmental, 2010, 96, 496-507.	20.2	34
31	The influence of impregnation temperature on the pzc of titania and the loading of Ni upon preparation of Ni/TiO2 catalysts. Studies in Surface Science and Catalysis, 2010, , 643-646.	1.5	3
32	Elucidation of the surface configuration of the Co(II) and Ni(II) aqua complexes and of the Cr(VI), Mo(VI) and W(VI) monomer and polymer oxo–species deposited on the titania surface during impregnation. Studies in Surface Science and Catalysis, 2010, 175, 117-125.	1.5	1
33	Interfacial Impregnation Chemistry in the Synthesis of Molybdenum Catalysts Supported on Titania. Journal of Physical Chemistry C, 2010, 114, 11868-11879.	3.1	31
34	Temperature – dependent evolution of molecular configurations of oxomolybdenum species on MoO3/TiO2 catalysts monitored by in situ Raman spectroscopy. Studies in Surface Science and Catalysis, 2010, 175, 613-616.	1.5	6
35	The interfacial chemistry of the impregnation step involved in the preparation of tungsten(VI) supported titania catalysts. Journal of Catalysis, 2009, 262, 266-279.	6.2	47
36	Interfacial Impregnation Chemistry in the Synthesis of Cobalt Catalysts Supported on Titania. Chemistry - A European Journal, 2009, 15, 13090-13104.	3.3	23

ALEXIS LYCOURGHIOTIS

#	Article	IF	CITATIONS
37	Preparation and characterization of [60] fullerene nanoparticles supported on titania used as a photocatalyst. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2009, 349, 189-194.	4.7	49
38	The influence of calcination on the size of nanocrystals, porous structure and acid–base properties of mesoporous anatase used as catalytic support. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2008, 324, 208-216.	4.7	11
39	Mapping the surface (hydr)oxo-groups of titanium oxide and its interface with an aqueous solution: The state of the art and a new approach. Advances in Colloid and Interface Science, 2008, 142, 20-42.	14.7	68
40	Modification of the preparation procedure for increasing the hydrodesulfurisation activity of the CoMo/Ĵ³-alumina catalysts. Catalysis Today, 2007, 127, 85-91.	4.4	18
41	The Role of the Liquidâ€Solid Interface in the Preparation of Supported Catalysts. Catalysis Reviews - Science and Engineering, 2006, 48, 363-444.	12.9	169
42	Investigation of the mode of interfacial deposition and the local structure of transition metal ionic species formed upon impregnation at the "catalytic support/electrolytic solution―interface. Studies in Surface Science and Catalysis, 2006, , 251-258.	1.5	9
43	The mechanism of the protonation of metal (hydr)oxides in aqueous solutions studied for various interfacial/surface ionization models and physicochemical parameters: A critical review and a novel approach. Advances in Colloid and Interface Science, 2006, 121, 111-130.	14.7	24
44	How metal (hydr)oxides are protonated in aqueous media: The () rule and the role of the interfacial potential. Journal of Colloid and Interface Science, 2006, 296, 389-395.	9.4	18
45	Towards the local structure of the Co(II), Ni(II), Cr(VI) and W(VI) ionic species formed upon impregnation on titania. Studies in Surface Science and Catalysis, 2006, , 809-816.	1.5	10
46	Cobalt oxide/γ-alumina catalysts prepared by equilibrium deposition filtration: The influence of the initial cobalt concentration on the structure of the oxide phase and the activity for complete benzene oxidation. Applied Catalysis A: General, 2005, 288, 1-9.	4.3	37
47	Differential Potentiometric Titration:Â Development of a Methodology for Determining the Point of Zero Charge of Metal (Hydr)oxides by One Titration Curve. Environmental Science & Technology, 2005, 39, 4100-4108.	10.0	84
48	Influence of the preparation method on the structure–activity of cobalt oxide catalysts supported on alumina for complete benzene oxidation. Applied Catalysis B: Environmental, 2005, 57, 299-312.	20.2	94
49	Kinetics of Adsorption of the Cobalt Ions on the "Electrolytic Solution/γ-Alumina―Interface. Journal of Physical Chemistry B, 2005, 109, 4599-4607.	2.6	25
50	Adsorption of cobalt species on the interface, which is developed between aqueous solution and metal oxides used for the preparation of supported catalysts: a critical review. Advances in Colloid and Interface Science, 2004, 110, 97-120.	14.7	73
51	Adsorption of Cobalt Ions on the "Electrolytic Solution/γ-Alumina―Interface Studied by Diffuse Reflectance Spectroscopy (DRS). Langmuir, 2004, 20, 10542-10550.	3.5	66
52	Fullerene C60 Supported on Silica and Î ³ -Alumina Catalyzed Photooxidations of Alkenes. Catalysis Letters, 2003, 89, 269-273.	2.6	15
53	Potentiometric Mass Titrations:Â Experimental and Theoretical Establishment of a New Technique for Determining the Point of Zero Charge (PZC) of Metal (Hydr)Oxides. Journal of Physical Chemistry B, 2003, 107, 9441-9451.	2.6	228
54	Cobalt Oxide Supported γ-Alumina Catalyst with Very High Active Surface Area Prepared by Equilibrium Deposition Filtration. Langmuir, 2002, 18, 417-422.	3.5	58

ALEXIS LYCOURGHIOTIS

#	Article	IF	CITATIONS
55	Potentiometric mass titrations: a quick scan for determining the point of zero charge. Chemical Communications, 2002, , 1980-1981.	4.1	67
56	Mechanism of deposition of Co2+and Ni2+ions on the interface between pure and F–-doped γ-alumina and the impregnating solution. Journal of the Chemical Society, Faraday Transactions, 1993, 89, 4101-4107.	1.7	19
57	Effect of temperature on the point of zero charge and surface charge of TiO2. Journal of the Chemical Society, Faraday Transactions, 1990, 86, 3437.	1.7	66
58	Determination of the surface coverage of oxidic supports by oxidic and non-oxidic supported phases using potentiometric titration and electrophoretic mobility data. A study of Fe2O3/Al2O3 supported catalysts. Journal of the Chemical Society Faraday Transactions I, 1988, 84, 1593.	1.0	11
59	Effect of temperature on the point of zero charge and surface dissociation constants of aqueous suspensions of Î ³ -Al2O3. Journal of the Chemical Society Faraday Transactions I, 1986, 82, 3697.	1.0	66
60	The nature of the molybdenum active phase supported on γ-Al2O3 modified by alkali earth cations. Journal of the Less Common Metals, 1982, 85, 275-284.	0.8	7
61	Molybdena catalysts prepared on modified carriers: Regulation of the symmetry and valence of the molybdenum species formed on γ-Al2O3 modified with alkali cations. Journal of the Less Common Metals, 1982, 84, 187-200.	0.8	22
62	Catalytic deactivation of Co-Mo hydrodesulphurization catalysts supported on γ-Al2O3 doped with Li+ ions. Journal of the Less Common Metals, 1982, 86, 137-143.	0.8	20
63	Formation of Cobalt-Species on the Al ₂ O ₃ Surface Doped with Ca ²⁺ and Fe ³⁺ , Studied by Diffuse-Reflectance Spectroscopy. Zeitschrift Fur Physikalische Chemie, 1981, 125, 239-249.	2.8	13
64	Studies on Modified Carriers: Characterization of Cobalt Active Species Supported on Silica Doped with Alkali Earth Cations. Zeitschrift Fur Physikalische Chemie, 1981, 126, 85-93.	2.8	7
65	Studies on Modified Carriers: D.R.S. Investigation of Cobalt Species Formed on Î ³ -Alumina Doped with Alkali Earth Cations. Zeitschrift Fur Physikalische Chemie, 1981, 126, 95-107.	2.8	13
66	Investigation of the Cobalt Species Formed on <i>γ</i> -Al ₂ O ₃ Doped with Alkali Metals. Zeitschrift Fur Physikalische Chemie, 1980, 121, 257-265.	2.8	16
67	Influence of Lithium on the Kind of Cobalt-Species Formed on <i>γ</i> -Al ₂ O ₃ . Zeitschrift Fur Physikalische Chemie, 1980, 120, 211-222.	2.8	15
68	Chromatographie Investigation of the Polarizing Power Developed on the Surface of Î ³ -Al2O3 and 13X Molecular Sieve. Zeitschrift Fur Physikalische Chemie, 1980, 123, 103-113.	2.8	0
69	Effect of sodium on the CoMo/γ-Al2O3 system. Part 1.—Influence of sodium content on the state of dispersion and on the nature of the cobalt supported on γ-Al2O3. Journal of the Chemical Society Faraday Transactions I, 1980, 76, 1677.	1.0	54
70	Effect of sodium on the CoMo/γ-Al2O3 system. Part 2.—Influence of sodium content and preparation methods on the state of dispersion and nature of molybdenum supported on γ-Al2O3. Journal of the Chemical Society Faraday Transactions I, 1980, 76, 2052.	1.0	30
71	Thermodynamics of adsorption based on gas–solid chromatography. Journal of the Chemical Society Faraday Transactions I, 1978, 74, 575.	1.0	35
72	Adsorption Studies by Gas-Solid Chromatography based on the Compensation Effect. Zeitschrift Fur Physikalische Chemie, 1978, 111, 207-213.	2.8	5

IF

CITATIONS

ARTICLE

73 Interfacial Chemistry. , 0, , 13-31.