
Neil A Mabbott

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1146636/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Foot-and-mouth disease virus localisation on follicular dendritic cells and sustained induction of neutralising antibodies is dependent on binding to complement receptors (CR2/CR1). PLoS Pathogens, 2022, 18, e1009942.	4.7	3
2	Recruitment of inflammatory monocytes by senescent fibroblasts inhibits antigen-specific tissue immunity during human aging. Nature Aging, 2021, 1, 101-113.	11.6	39
3	The clinical correlates of vaccine-induced immune thrombotic thrombocytopenia after immunisation with adenovirus vector-based SARS-CoV-2 vaccines. Immunotherapy Advances, 2021, 1, ltab019.	3.0	4
4	Inside-out chicken enteroids with leukocyte component as a model to study host–pathogen interactions. Communications Biology, 2021, 4, 377.	4.4	45
5	Dermal bacterial LPS-stimulation reduces susceptibility to intradermal Trypanosoma brucei infection. Scientific Reports, 2021, 11, 9856.	3.3	1
6	Vitamin D3 replacement enhances antigen-specific immunity in older adults. Immunotherapy Advances, 2021, 1, .	3.0	18
7	Temporal Profiling of the Cortical Synaptic Mitochondrial Proteome Identifies Ageing Associated Regulators of Stability. Cells, 2021, 10, 3403.	4.1	0
8	Aging-Related Impairments to M Cells in Peyer's Patches Coincide With Disturbances to Paneth Cells. Frontiers in Immunology, 2021, 12, 761949.	4.8	8
9	Continued Bcl6 Expression Prevents the Transdifferentiation of Established Tfh Cells into Th1 Cells during Acute Viral Infection. Cell Reports, 2020, 33, 108232.	6.4	22
10	The Effects of Immune System Modulation on Prion Disease Susceptibility and Pathogenesis. International Journal of Molecular Sciences, 2020, 21, 7299.	4.1	12
11	Microbial Stimulation Reverses the Age-Related Decline in M Cells in Aged Mice. IScience, 2020, 23, 101147.	4.1	24
12	Influence of the Draining Lymph Nodes and Organized Lymphoid Tissue Microarchitecture on Susceptibility to Intradermal Trypanosoma brucei Infection. Frontiers in Immunology, 2020, 11, 1118.	4.8	8
13	Sestrins induce natural killer function in senescent-like CD8+ T cells. Nature Immunology, 2020, 21, 684-694.	14.5	139
14	Accelerated onset of CNS prion disease in mice co-infected with a gastrointestinal helminth pathogen during the preclinical phase. Scientific Reports, 2020, 10, 4554.	3.3	12
15	To the Skin and Beyond: The Immune Response to African Trypanosomes as They Enter and Exit the Vertebrate Host. Frontiers in Immunology, 2020, 11, 1250.	4.8	24
16	Deletion of a Csf1r enhancer selectively impacts CSF1R expression and development of tissue macrophage populations. Nature Communications, 2019, 10, 3215.	12.8	191
17	Discrimination of Prion Strain Targeting in the Central Nervous System via Reactive Astrocyte Heterogeneity in CD44 Expression. Frontiers in Cellular Neuroscience, 2019, 13, 411.	3.7	21
18	Shiga toxin sub-type 2a increases the efficiency of Escherichia coli O157 transmission between animals and restricts epithelial regeneration in bovine enteroids. PLoS Pathogens, 2019, 15, e1008003.	4.7	42

#	Article	IF	CITATIONS
19	Type I interferon induces CXCL13 to support ectopic germinal center formation. Journal of Experimental Medicine, 2019, 216, 621-637.	8.5	130
20	Effects of hostâ€derived chemokines on the motility and viability of <i>Trypanosoma brucei</i> . Parasite Immunology, 2019, 41, e12609.	1.5	7
21	Activated Peyer′s patch B cells sample antigen directly from M cells in the subepithelial dome. Nature Communications, 2019, 10, 2423.	12.8	55
22	Effect of co-infection with a small intestine-restricted helminth pathogen on oral prion disease pathogenesis in mice. Scientific Reports, 2019, 9, 6674.	3.3	8
23	Antigen-presenting ILC3 regulate T cell–dependent IgA responses to colonic mucosal bacteria. Journal of Experimental Medicine, 2019, 216, 728-742.	8.5	113
24	Editorial: Immunological Consequences of Antigen Sampling at Mucosal Surfaces. Frontiers in Immunology, 2019, 10, 2773.	4.8	0
25	Unaltered intravenous prion disease pathogenesis in the temporary absence of marginal zone B cells. Scientific Reports, 2019, 9, 19119.	3.3	0
26	Antigen Sampling CSF1R-Expressing Epithelial Cells Are the Functional Equivalents of Mammalian M Cells in the Avian Follicle-Associated Epithelium. Frontiers in Immunology, 2019, 10, 2495.	4.8	15
27	Identifying the role of complement receptor 2 (CR2) on follicular dendritic cells (FDCs) in the persistence of foot and mouth disease virus (FMDV). Access Microbiology, 2019, 1, .	0.5	0
28	The role of CSF1R-dependent macrophages in control of the intestinal stem-cell niche. Nature Communications, 2018, 9, 1272.	12.8	155
29	Enhancement of cutaneous immunity during aging by blocking p38 mitogen-activated protein (MAP) kinase–induced inflammation. Journal of Allergy and Clinical Immunology, 2018, 142, 844-856.	2.9	75
30	The Influence of Parasite Infections on Host Immunity to Co-infection With Other Pathogens. Frontiers in Immunology, 2018, 9, 2579.	4.8	87
31	Impact of Zostavax Vaccination on T-Cell Accumulation and Cutaneous Gene Expression in the Skin of Older Humans After Varicella Zoster Virus Antigen–Specific Challenge. Journal of Infectious Diseases, 2018, 218, S88-S98.	4.0	10
32	Pleiotropic Impacts of Macrophage and Microglial Deficiency on Development in Rats with Targeted Mutation of the <i>Csf1r</i> Locus. Journal of Immunology, 2018, 201, 2683-2699.	0.8	114
33	Increased susceptibility to oral <i>Trichuris muris</i> infection in the specific absence of <scp>CXCR</scp> 5 ⁺ <scp>CD</scp> 11c ⁺ cells. Parasite Immunology, 2018, 40, e12566.	1.5	4
34	Oral Prion Neuroinvasion Occurs Independently of PrP ^C Expression in the Gut Epithelium. Journal of Virology, 2018, 92, .	3.4	7
35	Development of in vitro enteroids derived from bovine small intestinal crypts. Veterinary Research, 2018, 49, 54.	3.0	58
36	The role of the immune system in prion infection. Handbook of Clinical Neurology / Edited By P J Vinken and G W Bruyn, 2018, 153, 85-107.	1.8	13

#	Article	IF	CITATIONS
37	Structural and functional changes to lymph nodes in ageing mice. Immunology, 2017, 151, 239-247.	4.4	51
38	Pre/pro-B cells generate macrophage populations during homeostasis and inflammation. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E3954-E3963.	7.1	32
39	Ageing adversely affects the migration and function of marginal zone B cells. Immunology, 2017, 151, 349-362.	4.4	42
40	Oral Prion Disease Pathogenesis Is Impeded in the Specific Absence of CXCR5-Expressing Dendritic Cells. Journal of Virology, 2017, 91, .	3.4	30
41	Derivation of marker gene signatures from human skin and their use in the interpretation of the transcriptional changes associated with dermatological disorders. Journal of Pathology, 2017, 241, 600-613.	4.5	22
42	Immunology of Prion Protein and Prions. Progress in Molecular Biology and Translational Science, 2017, 150, 203-240.	1.7	9
43	Influence of ageing on the microarchitecture of the spleen and lymph nodes. Biogerontology, 2017, 18, 723-738.	3.9	52
44	c-Rel is dispensable for the differentiation and functional maturation of M cells in the follicle-associated epithelium. Immunobiology, 2017, 222, 316-326.	1.9	8
45	Bovine cryptosporidiosis: impact, host-parasite interaction and control strategies. Veterinary Research, 2017, 48, 42.	3.0	171
46	How do PrPSc Prions Spread between Host Species, and within Hosts?. Pathogens, 2017, 6, 60.	2.8	28
47	Prion disease pathogenesis in the absence of the commensal microbiota. Journal of General Virology, 2017, 98, 1943-1952.	2.9	13
48	From Scientific Curiosity to Public Enemy Number One in Six Short Months. PLoS Pathogens, 2016, 12, e1005371.	4.7	0
49	Macrophage colony-stimulating factor (CSF1) controls monocyte production and maturation and the steady-state size of the liver in pigs. American Journal of Physiology - Renal Physiology, 2016, 311, G533-G547.	3.4	55
50	The Priority position paper: Protecting Europe's food chain from prions. Prion, 2016, 10, 165-181.	1.8	13
51	Prion pathogenesis is unaltered following down-regulation of SIGN-R1. Virology, 2016, 497, 337-345.	2.4	5
52	The influence of the commensal and pathogenic gut microbiota on prion disease pathogenesis. Journal of General Virology, 2016, 97, 1725-1738.	2.9	14
53	Increased Abundance of M Cells in the Gut Epithelium Dramatically Enhances Oral Prion Disease Susceptibility. PLoS Pathogens, 2016, 12, e1006075.	4.7	38
54	Immunology of Prion Disease. , 2016, , 184-199.		0

Immunology of Prion Disease., 2016, , 184-199. 54

#	Article	IF	CITATIONS
55	MicroRNAâ€100â€5p indirectly modulates the expression of <i>ll6</i> , <i> Ptgs1/2</i> and <i>Tlr4 </i> <scp>mRNA</scp> in the mouse follicular dendritic cellâ€like cell line, FLâ€Y. Immunology, 2015, 144, 34-44.	4.4	12
56	A breakdown in communication? Understanding the effects of aging on the human small intestine epithelium. Clinical Science, 2015, 129, 529-531.	4.3	30
57	Reciprocal regulation of lymphoid tissue development in the large intestine by IL-25 and IL-23. Mucosal Immunology, 2015, 8, 582-595.	6.0	40
58	The Gut-Associated Lymphoid Tissues in the Small Intestine, Not the Large Intestine, Play a Major Role in Oral Prion Disease Pathogenesis. Journal of Virology, 2015, 89, 9532-9547.	3.4	35
59	An endogenous nanomineral chaperones luminal antigen and peptidoglycan to intestinal immune cells. Nature Nanotechnology, 2015, 10, 361-369.	31.5	73
60	The Characterization of Varicella Zoster Virus–Specific T Cells in Skin and Blood during Aging. Journal of Investigative Dermatology, 2015, 135, 1752-1762.	0.7	86
61	Prospects for safe and effective vaccines against prion diseases. Expert Review of Vaccines, 2015, 14, 1-4.	4.4	25
62	Aging and the mucosal immune system in the intestine. Biogerontology, 2015, 16, 133-145.	3.9	76
63	Characterisation of a Novel Fc Conjugate of Macrophage Colony-stimulating Factor. Molecular Therapy, 2014, 22, 1580-1592.	8.2	88
64	Peripheral prion disease pathogenesis is unaltered in the absence of sialoadhesin (Siglecâ€1/ <scp>CD</scp> 169). Immunology, 2014, 143, 120-129.	4.4	14
65	Pleiotropic effects of extended blockade of CSF1R signaling in adult mice. Journal of Leukocyte Biology, 2014, 96, 265-274.	3.3	86
66	Human prion diseases and the risk of their transmission during anatomical dissection. Clinical Anatomy, 2014, 27, 821-832.	2.7	11
67	ldentification of coâ€expressed gene signatures in mouse <scp>B</scp> 1, marginal zone and <scp>B</scp> 2 <scp>B</scp> â€cell populations. Immunology, 2014, 141, 79-95.	4.4	41
68	Evidence of subclinical prion disease in aged mice following exposure to bovine spongiform encephalopathy. Journal of General Virology, 2014, 95, 231-243.	2.9	24
69	The MacBlue Binary Transgene (csf1r-gal4VP16/UAS-ECFP) Provides a Novel Marker for Visualisation of Subsets of Monocytes, Macrophages and Dendritic Cells and Responsiveness to CSF1 Administration. PLoS ONE, 2014, 9, e105429.	2.5	48
70	An expression atlas of human primary cells: inference of gene function from coexpression networks. BMC Genomics, 2013, 14, 632.	2.8	347
71	Can DCs be distinguished from macrophages by molecular signatures?. Nature Immunology, 2013, 14, 187-189.	14.5	64
72	Ablation of the cellular prion protein, <scp>PrP^C</scp> , specifically on follicular dendritic cells has no effect on their maturation or function. Immunology, 2013, 138, 246-257.	4.4	17

#	Article	IF	CITATIONS
73	Microfold (M) cells: important immunosurveillance posts in the intestinal epithelium. Mucosal Immunology, 2013, 6, 666-677.	6.0	549
74	The functional maturation of M cells is dramatically reduced in the Peyer's patches of aged mice. Mucosal Immunology, 2013, 6, 1027-1037.	6.0	80
75	CSF-1 receptor-mediated differentiation of a new type of monocytic cell with B cell-stimulating activity: its selective dependence on IL-34. Journal of Leukocyte Biology, 2013, 95, 19-31.	3.3	28
76	Identification of Novel Genes Selectively Expressed in the Follicle-Associated Epithelium from the Meta-Analysis of Transcriptomics Data from Multiple Mouse Cell and Tissue Populations. DNA Research, 2012, 19, 407-422.	3.4	17
77	The diverse roles of mononuclear phagocytes in prion disease pathogenesis. Prion, 2012, 6, 124-133.	1.8	8
78	Prion pathogenesis and secondary lymphoid organs (SLO). Prion, 2012, 6, 322-333.	1.8	15
79	M cell-depletion blocks oral prion disease pathogenesis. Mucosal Immunology, 2012, 5, 216-225.	6.0	88
80	The Effects of Host Age on the Transport of Complement-Bound Complexes to the Spleen and the Pathogenesis of Intravenous Scrapie Infection. Journal of Virology, 2012, 86, 25-35.	3.4	29
81	Determining the role of mononuclear phagocytes in prion neuroinvasion from the skin. Journal of Leukocyte Biology, 2012, 91, 817-828.	3.3	13
82	Salmonella Transforms Follicle-Associated Epithelial Cells into M Cells to Promote Intestinal Invasion. Cell Host and Microbe, 2012, 12, 645-656.	11.0	144
83	Prion Disease and the Innate Immune System. Viruses, 2012, 4, 3389-3419.	3.3	42
84	B Cell-Specific S1PR1 Deficiency Blocks Prion Dissemination between Secondary Lymphoid Organs. Journal of Immunology, 2012, 188, 5032-5040.	0.8	26
85	Defining the anatomical localisation of subsets of the murine mononuclear phagocyte system using integrin alpha X (Itgax, CD11c) and colony stimulating factor 1 receptor (Csf1r, CD115) expression fails to discriminate dendritic cells from macrophages. Immunobiology, 2011, 216, 1228-1237.	1.9	40
86	Expression of mesenchyme-specific gene signatures by follicular dendritic cells: insights from the meta-analysis of microarray data from multiple mouse cell populations. Immunology, 2011, 133, 482-498.	4.4	50
87	Follicular Dendritic Cell-Specific Prion Protein (PrPc) Expression Alone Is Sufficient to Sustain Prion Infection in the Spleen. PLoS Pathogens, 2011, 7, e1002402.	4.7	89
88	Prion Uptake in the Gut: Identification of the First Uptake and Replication Sites. PLoS Pathogens, 2011, 7, e1002449.	4.7	103
89	Meta-analysis of lineage-specific gene expression signatures in mouse leukocyte populations. Immunobiology, 2010, 215, 724-736.	1.9	81
90	Scrapie Affects the Maturation Cycle and Immune Complex Trapping by Follicular Dendritic Cells in Mice. PLoS ONE, 2009, 4, e8186.	2.5	19

#	Article	IF	CITATIONS
91	The Effects of Host Age on Follicular Dendritic Cell Status Dramatically Impair Scrapie Agent Neuroinvasion in Aged Mice. Journal of Immunology, 2009, 183, 5199-5207.	0.8	54
92	In Vivo Depletion of CD11c+ Cells Impairs Scrapie Agent Neuroinvasion from the Intestine. Journal of Immunology, 2007, 179, 7758-7766.	0.8	60
93	Role of the GALT in Scrapie Agent Neuroinvasion from the Intestine. Journal of Immunology, 2007, 178, 3757-3766.	0.8	64
94	Role of the draining lymph node in scrapie agent transmission from the skin. Immunology Letters, 2007, 109, 64-71.	2.5	19
95	Isolated lymphoid follicle maturation induces the development of follicular dendritic cells. Immunology, 2007, 120, 336-344.	4.4	27
96	Assessing the involvement of migratory dendritic cells in the transfer of the scrapie agent from the immune to peripheral nervous systems. Journal of Neuroimmunology, 2007, 187, 114-125.	2.3	26
97	Prions and their lethal journey to the brain. Nature Reviews Microbiology, 2006, 4, 201-211.	28.6	172
98	Follicular dendritic cell dedifferentiation reduces scrapie susceptibility following inoculation via the skin. Immunology, 2005, 114, 225-234.	4.4	34
99	Skin-derived dendritic cells acquire and degrade the scrapie agent following in vitro exposure. Immunology, 2005, 116, 122-133.	4.4	32
100	Neuroinvasion by Scrapie following Inoculation via the Skin Is Independent of Migratory Langerhans Cells. Journal of Virology, 2005, 79, 1888-1897.	3.4	28
101	Prions and the blood and immune systems. Haematologica, 2005, 90, 542-8.	3.5	16
102	The complement system in prion diseases. Current Opinion in Immunology, 2004, 16, 587-593.	5.5	20
103	Scrapie transmission following exposure through the skin is dependent on follicular dendritic cells in lymphoid tissues. Journal of Dermatological Science, 2004, 35, 101-111.	1.9	36
104	Complement component C5 is not involved in scrapie pathogenesis. Immunobiology, 2004, 209, 545-549.	1.9	26
105	Prion disease: bridging the spleen-nerve gap. Nature Medicine, 2003, 9, 1463-1464.	30.7	14
106	Follicular Dendritic Cell Dedifferentiation by Treatment with an Inhibitor of the Lymphotoxin Pathway Dramatically Reduces Scrapie Susceptibility. Journal of Virology, 2003, 77, 6845-6854.	3.4	136
107	Temporary Blockade of the Tumor Necrosis Factor Receptor Signaling Pathway Impedes the Spread of Scrapie to the Brain. Journal of Virology, 2002, 76, 5131-5139.	3.4	52
108	Follicular dendritic cells as targets for intervention in transmissible spongiform encephalopathies. Seminars in Immunology, 2002, 14, 285-293.	5.6	24

#	Article	IF	CITATIONS
109	Migrating intestinal dendritic cells transport PrPSc from the gut. Journal of General Virology, 2002, 83, 267-271.	2.9	180
110	The transmissible spongiform encephalopathies: pathogenic mechanisms and strategies for therapeutic intervention. Expert Opinion on Therapeutic Targets, 2001, 5, 569-585.	3.4	7
111	Temporary depletion of complement component C3 or genetic deficiency of C1q significantly delays onset of scrapie. Nature Medicine, 2001, 7, 485-487.	30.7	206
112	The immunobiology of TSE diseases. Journal of General Virology, 2001, 82, 2307-2318.	2.9	70
113	Follicular dendritic cells in TSE pathogenesis. Trends in Immunology, 2000, 21, 442-446.	7.5	56
114	Temporary inactivation of follicular dendritic cells delays neuroinvasion of scrapie. Nature Medicine, 2000, 6, 719-720.	30.7	214
115	Tumor Necrosis Factor Alpha-Deficient, but Not Interleukin-6-Deficient, Mice Resist Peripheral Infection with Scrapie. Journal of Virology, 2000, 74, 3338-3344.	3.4	115
116	Scrapie replication in lymphoid tissues depends on prion protein-expressing follicular dendritic cells. Nature Medicine, 1999, 5, 1308-1312.	30.7	345
117	Nitric oxide produced in the lungs of mice immunized with the radiationâ€attenuated schistosome vaccine is not the major agent causing challenge parasite elimination. Immunology, 1998, 93, 55-63.	4.4	47
118	Involvement of the immune system in TSE pathogenesis. Trends in Immunology, 1998, 19, 201-203.	7.5	45
119	African trypanosome infections in mice that lack the interferonâ€Î³ receptor gene: nitric oxideâ€dependent and â€independent suppression of Tâ€cell proliferative responses and the development of anaemia. Immunology, 1998, 94, 476-480.	4.4	38
120	Tâ€lymphocyte activation and the cellular form of the prion protein. Immunology, 1997, 92, 161-165.	4.4	107
121	Nitric oxide-mediated suppression of T cell responses duringTrypanosoma brucei infection: soluble trypanosome products and interferon-Î ³ are synergistic inducers of nitric oxide synthase. European Journal of Immunology, 1996, 26, 539-543.	2.9	69
122	Suppressor macrophages in <i>Trypanosoma brucei</i> infection: nitric oxide is related to both suppressive activity and lifespan <i>in vivo</i> . Parasite Immunology, 1995, 17, 143-150.	1.5	63
123	Bone marrow nitric oxide production and development of anemia in Trypanosoma brucei-infected mice. Infection and Immunity, 1995, 63, 1563-1566.	2.2	70
124	Inhibition of nitric oxide synthesis leads to reduced parasitemia in murine Trypanosoma brucei infection. Infection and Immunity, 1994, 62, 2135-2137.	2.2	67
125	Complete Microglia Deficiency Accelerates Prion Disease Without Enhancing CNS Prion Accumulation. SSRN Electronic Journal, 0, , .	0.4	3
126	Microbial Stimulation Reverses the Age-Related Decline in M Cells in Aged Mice. SSRN Electronic Journal, 0, , .	0.4	0

#	Article	IF	CITATIONS
127	Innate Immune Tolerance in Microglia Does Not Impact on Central Nervous System Prion Disease. Frontiers in Cellular Neuroscience, 0, 16, .	3.7	2
128	Development of Bovine Gastric Organoids as a Novel In Vitro Model to Study Host-Parasite Interactions in Gastrointestinal Nematode Infections. Frontiers in Cellular and Infection Microbiology, 0, 12, .	3.9	10
129	The Development of 3D Bovine Intestinal Organoid Derived Models to Investigate Mycobacterium Avium ssp Paratuberculosis Pathogenesis. Frontiers in Veterinary Science, 0, 9, .	2.2	10