Ryohei Katayama

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1146500/publications.pdf Version: 2024-02-01

Ργομει Καταγαμα

#	Article	IF	CITATIONS
1	HER3 activation contributes toward the emergence of ALK inhibitor-tolerant cells in ALK-rearranged lung cancer with mesenchymal features. Npj Precision Oncology, 2022, 6, 5.	5.4	13
2	GSK3 inhibition circumvents and overcomes acquired lorlatinib resistance in ALK-rearranged non-small-cell lung cancer. Npj Precision Oncology, 2022, 6, 16.	5.4	5
3	Targeting Podoplanin for the Treatment of Osteosarcoma. Clinical Cancer Research, 2022, 28, 2633-2645.	7.0	12
4	Acquired resistance to BRAF inhibitors is mediated by BRAF splicing variants in BRAF V600E mutation-positive colorectal neuroendocrine carcinoma. Cancer Letters, 2022, 543, 215799.	7.2	3
5	A case of hyperprogressive disease following atezolizumab therapy for pulmonary pleomorphic carcinoma with epidermal growth factor receptor mutation. Respiratory Medicine Case Reports, 2021, 33, 101405.	0.4	6
6	Gilteritinib overcomes lorlatinib resistance in ALK-rearranged cancer. Nature Communications, 2021, 12, 1261.	12.8	52
7	Novel knockâ€in mouse model for the evaluation of the therapeutic efficacy and toxicity of human podoplanin–targeting agents. Cancer Science, 2021, 112, 2299-2313.	3.9	4
8	Microsecond-timescale MD simulation of EGFR minor mutation predicts the structural flexibility of EGFR kinase core that reflects EGFR inhibitor sensitivity. Npj Precision Oncology, 2021, 5, 32.	5.4	11
9	Monitoring epidermal growth factor receptor C797S mutation in Japanese non–small cell lung cancer patients with serial cellâ€free DNA evaluation using digital droplet PCR. Cancer Science, 2021, 112, 2371-2380.	3.9	7
10	Platelet-derived lysophosphatidic acid mediated LPAR1 activation as a therapeutic target for osteosarcoma metastasis. Oncogene, 2021, 40, 5548-5558.	5.9	17
11	Efficacy of EGFR tyrosine kinase inhibitors in patients having EGFR-activating mutations with or without BIM polymorphisms. Cancer Chemotherapy and Pharmacology, 2020, 86, 517-525.	2.3	3
12	U.S. Phase I First-in-human Study of Taletrectinib (DS-6051b/AB-106), a ROS1/TRK Inhibitor, in Patients with Advanced Solid Tumors. Clinical Cancer Research, 2020, 26, 4785-4794.	7.0	63
13	Improvement in predicting drug sensitivity changes associated with protein mutations using a molecular dynamics based alchemical mutation method. Scientific Reports, 2020, 10, 2161.	3.3	7
14	Drug resistance mechanisms in Japanese anaplastic lymphoma kinaseâ€positive non–small cell lung cancer and the clinical responses based on the resistant mechanisms. Cancer Science, 2020, 111, 932-939.	3.9	39
15	Osimertinib Overcomes Alectinib Resistance Caused by Amphiregulin in a Leptomeningeal Carcinomatosis Model of ALK-Rearranged LungÂCancer. Journal of Thoracic Oncology, 2020, 15, 752-765.	1.1	24
16	Overcoming resistance by ALK compound mutation (I1171S + G1269A) after sequential treatment of multiple ALK inhibitors in nonâ€small cell lung cancer. Thoracic Cancer, 2020, 11, 581-587.	1.9	26
17	The new-generation selective ROS1/NTRK inhibitor DS-6051b overcomes crizotinib resistant ROS1-G2032R mutation in preclinical models. Nature Communications, 2019, 10, 3604.	12.8	99
18	Prediction of ALK mutations mediating ALK-TKIs resistance and drug re-purposing to overcome the resistance. EBioMedicine, 2019, 41, 105-119.	6.1	93

<u>RYOHEI ΚΑΤΑΥΑΜΑ</u>

#	Article	IF	CITATIONS
19	Secreted PD-L1 variants mediate resistance to PD-L1 blockade therapy in non–small cell lung cancer. Journal of Experimental Medicine, 2019, 216, 982-1000.	8.5	173
20	Epithelial-to-Mesenchymal Transition Is a Mechanism of ALK Inhibitor Resistance in Lung Cancer Independent of <i>ALK</i> Mutation Status. Cancer Research, 2019, 79, 1658-1670.	0.9	79
21	P2.14-56 Osimertinib Overcomes Alectinib Resistance Caused by Amphiregulin in a Leptomeningeal Carcinomatosis Model of EML4-ALK Lung Cancer. Journal of Thoracic Oncology, 2019, 14, S852-S853.	1.1	0
22	Drug resistance in anaplastic lymphoma kinaseâ€rearranged lung cancer. Cancer Science, 2018, 109, 572-580.	3.9	49
23	High ratio of T790M to EGFR activating mutations correlate with the osimertinib response in non-small-cell lung cancer. Lung Cancer, 2018, 117, 1-6.	2.0	46
24	Targeting the Golgi apparatus to overcome acquired resistance of non-small cell lung cancer cells to EGFR tyrosine kinase inhibitors. Oncotarget, 2018, 9, 1641-1655.	1.8	25
25	3D culture system containing gellan gum restores oncogene dependence in ROS1 rearrangements non-small cell lung cancer. Biochemical and Biophysical Research Communications, 2018, 501, 527-533.	2.1	8
26	Identification of Mutation Accumulation as Resistance Mechanism Emerging in First-Line Osimertinib Treatment. Journal of Thoracic Oncology, 2018, 13, 915-925.	1.1	22
27	Recurrent 8q24 rearrangement in blastic plasmacytoid dendritic cell neoplasm: association with immunoblastoid cytomorphology, MYC expression, and drug response. Leukemia, 2018, 32, 2590-2603.	7.2	59
28	A safety study of newly generated anti-podoplanin-neutralizing antibody in cynomolgus monkey (<i>Macaca fascicularis</i>). Oncotarget, 2018, 9, 33322-33336.	1.8	7
29	<i>APC</i> Mutations as a Potential Biomarker for Sensitivity to Tankyrase Inhibitors in Colorectal Cancer. Molecular Cancer Therapeutics, 2017, 16, 752-762.	4.1	67
30	Therapeutic strategies and mechanisms of drug resistance in anaplastic lymphoma kinase (ALK)-rearranged lung cancer. , 2017, 177, 1-8.		30
31	Brigatinib combined with anti-EGFR antibody overcomes osimertinib resistance in EGFR-mutated non-small-cell lung cancer. Nature Communications, 2017, 8, 14768.	12.8	306
32	Mechanisms of Resistance to NTRK Inhibitors and Therapeutic Strategies in NTRK1-Rearranged Cancers. Molecular Cancer Therapeutics, 2017, 16, 2130-2143.	4.1	82
33	TKI-addicted ROS1-rearranged cells are destined to survival or death by the intensity of ROS1 kinase activity. Scientific Reports, 2017, 7, 5519.	3.3	10
34	Molecular Mechanisms of Resistance to First- and Second-Generation ALK Inhibitors in <i>ALK</i> -Rearranged Lung Cancer. Cancer Discovery, 2016, 6, 1118-1133.	9.4	919
35	P-glycoprotein Mediates Ceritinib Resistance in Anaplastic Lymphoma Kinase-rearranged Non-small Cell Lung Cancer. EBioMedicine, 2016, 3, 54-66.	6.1	123
36	Resensitization to Crizotinib by the Lorlatinib <i>ALK</i> Resistance Mutation L1198F. New England Journal of Medicine, 2016, 374, 54-61.	27.0	433

RYOHEI ΚΑΤΑΥΑΜΑ

#	Article	IF	CITATIONS
37	RB loss in resistant EGFR mutant lung adenocarcinomas that transform to small-cell lung cancer. Nature Communications, 2015, 6, 6377.	12.8	498
38	Cabozantinib Overcomes Crizotinib Resistance in ROS1 Fusion–Positive Cancer. Clinical Cancer Research, 2015, 21, 166-174.	7.0	172
39	Therapeutic Targeting of Anaplastic Lymphoma Kinase in Lung Cancer: A Paradigm for Precision Cancer Medicine. Clinical Cancer Research, 2015, 21, 2227-2235.	7.0	236
40	PF-06463922, an ALK/ROS1 Inhibitor, Overcomes Resistance to First and Second Generation ALK Inhibitors in Preclinical Models. Cancer Cell, 2015, 28, 70-81.	16.8	389
41	The ALK Inhibitor Ceritinib Overcomes Crizotinib Resistance in Non–Small Cell Lung Cancer. Cancer Discovery, 2014, 4, 662-673.	9.4	720
42	Patient-derived models of acquired resistance can identify effective drug combinations for cancer. Science, 2014, 346, 1480-1486.	12.6	635
43	Two Novel ALK Mutations Mediate Acquired Resistance to the Next-Generation ALK Inhibitor Alectinib. Clinical Cancer Research, 2014, 20, 5686-5696.	7.0	261
44	Tivantinib (ARQ 197) Exhibits Antitumor Activity by Directly Interacting with Tubulin and Overcomes ABC Transporter–Mediated Drug Resistance. Molecular Cancer Therapeutics, 2014, 13, 2978-2990.	4.1	57
45	Cytotoxic Activity of Tivantinib (ARQ 197) Is Not Due Solely to c-MET Inhibition. Cancer Research, 2013, 73, 3087-3096.	0.9	194
46	<i>ALK</i> Rearrangements Are Mutually Exclusive with Mutations in <i>EGFR</i> or <i>KRAS</i> : An Analysis of 1,683 Patients with Non–Small Cell Lung Cancer. Clinical Cancer Research, 2013, 19, 4273-4281.	7.0	521
47	Acquired Resistance to Crizotinib from a Mutation in <i>CD74</i> – <i>ROS1</i> . New England Journal of Medicine, 2013, 368, 2395-2401.	27.0	345
48	Mechanisms of Acquired Crizotinib Resistance in ALK-Rearranged Lung Cancers. Science Translational Medicine, 2012, 4, 120ra17.	12.4	1,138
49	<i>ROS1</i> Rearrangements Define a Unique Molecular Class of Lung Cancers. Journal of Clinical Oncology, 2012, 30, 863-870.	1.6	1,435
50	Therapeutic strategies to overcome crizotinib resistance in non-small cell lung cancers harboring the fusion oncogene EML4-ALK. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 7535-7540.	7.1	515
51	Transforming growth factor-Î ² decreases the cancer-initiating cell population within diffuse-type gastric carcinoma cells. Oncogene, 2011, 30, 1693-1705.	5.9	77
52	Cell-permeable Carboxyl-terminal p27Kip1 Peptide Exhibits Anti-tumor Activity by Inhibiting Pim-1 Kinase. Journal of Biological Chemistry, 2011, 286, 2681-2688.	3.4	29
53	AP-1-Dependent miR-21 Expression Contributes to Chemoresistance in Cancer Stem Cell-Like SP Cells. Oncology Research, 2010, 19, 23-33.	1.5	56
54	Modulation of Wnt signaling by the nuclear localization of cellular FLIP-L. Journal of Cell Science, 2010, 123, 23-28.	2.0	26

<u>RYOHEI ΚΑΤΑΥΑΜΑ</u>

#	Article	IF	CITATIONS
55	Activity of IPI-504, a Novel Heat-Shock Protein 90 Inhibitor, in Patients With Molecularly Defined Non–Small-Cell Lung Cancer. Journal of Clinical Oncology, 2010, 28, 4953-4960.	1.6	331
56	Dofequidar fumarate sensitizes cancer stemâ€like side population cells to chemotherapeutic drugs by inhibiting ABCC2/BCRPâ€mediated drug export. Cancer Science, 2009, 100, 2060-2068.	3.9	73
57	TUSC4/NPRL2, a novel PDK1â€interacting protein, inhibits PDK1 tyrosine phosphorylation and its downstream signaling. Cancer Science, 2008, 99, 1827-1834.	3.9	26
58	Pim Kinases Promote Cell Cycle Progression by Phosphorylating and Down-regulating p27Kip1 at the Transcriptional and Posttranscriptional Levels. Cancer Research, 2008, 68, 5076-5085.	0.9	260
59	Casein Kinase 2–Interacting Protein-1, a Novel Akt Pleckstrin Homology Domain-Interacting Protein, Down-regulates PI3K/Akt Signaling and Suppresses Tumor Growth <i>In vivo</i> . Cancer Research, 2007, 67, 9666-9676.	0.9	64
60	Impairment of the ubiquitin-proteasome system by cellular FLIP. Genes To Cells, 2007, 12, 070606122915005-???.	1.2	21
61	Cell differentiation inducers derived from thalidomide. Bioorganic and Medicinal Chemistry Letters, 2005, 15, 3212-3215.	2.2	12
62	Cellular FLIP Inhibits β-Catenin Ubiquitylation and Enhances Wnt Signaling. Molecular and Cellular Biology, 2004, 24, 8418-8427.	2.3	47
63	Apollon ubiquitinates SMAC and caspase-9, and has an essential cytoprotection function. Nature Cell Biology, 2004, 6, 849-860.	10.3	221
64	ComplexN-glycosylated form of nicastrin is stabilized and selectively bound to presenilin fragments. FEBS Letters, 2002, 520, 117-121.	2.8	59