
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1146420/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A novel coral-like garnet for high-performance PEO-based all solid-state batteries. Science China Materials, 2022, 65, 364-372.	6.3	20
2	Alleviation role of functional carbon nanodots for tomato growth and soil environment under drought stress. Journal of Hazardous Materials, 2022, 423, 127260.	12.4	14
3	Carbon Nanotubesâ€Based Electrocatalysts: Structural Regulation, Support Effect, and Synchrotronâ€Based Characterization. Advanced Functional Materials, 2022, 32, 2106684.	14.9	14
4	Safe and Stable Lithium Metal Batteries Enabled by an Amide-Based Electrolyte. Nano-Micro Letters, 2022, 14, 44.	27.0	34
5	MOF-based ionic sieve interphase for regulated Zn ²⁺ flux toward dendrite-free aqueous zinc-ion batteries. Journal of Materials Chemistry A, 2022, 10, 4366-4375.	10.3	45
6	Reversible LiOH chemistry in Li-O2 batteries with free-standing Ag/Î⁻-MnO2 nanoflower cathode. Science China Materials, 2022, 65, 1431-1442.	6.3	9
7	Li ₂ CO ₃ : Insights into Its Blocking Effect on Li-Ion Transfer in Garnet Composite Electrolytes. ACS Applied Energy Materials, 2022, 5, 2853-2861.	5.1	17
8	Focusing on the Subsequent Coulombic Efficiencies of SiO _{<i>x</i>} : Initial High-Temperature Charge after Over-Capacity Prelithiation for High-Efficiency SiO _{<i>x</i>} -Based Full-Cell Battery. ACS Applied Materials & Interfaces, 2022, 14, 14284-14292.	8.0	22
9	Functional carbon nanodots improve soil quality and tomato tolerance in saline-alkali soils. Science of the Total Environment, 2022, 830, 154817.	8.0	17
10	Trash to treasure: recycling discarded agarose gel for practical Na/K-ion batteries. Journal of Materials Chemistry A, 2022, 10, 15026-15035.	10.3	7
11	Low-cost and facile synthesis of LACP solid state electrolyte via a co-precipitation method. Applied Physics Letters, 2022, 121, 023904.	3.3	8
12	Foldable potassium-ion batteries enabled by free-standing and flexible SnS ₂ @C nanofibers. Energy and Environmental Science, 2021, 14, 424-436.	30.8	142
13	Fast and stable K-ion storage enabled by synergistic interlayer and pore-structure engineering. Nano Research, 2021, 14, 4502-4511.	10.4	36
14	Green and Facile Synthesis of Nanosized Polythiophene as an Organic Anode for High-Performance Potassium-Ion Battery. , 2021, , 159-166.		0
15	Spontaneous In Situ Surface Alloying of Li-Zn Derived from a Novel Zn2+-Containing Solid Polymer Electrolyte for Steady Cycling of Li Metal Battery. ACS Sustainable Chemistry and Engineering, 2021, 9, 4282-4292.	6.7	4
16	Bifunctional In Situ Polymerized Interface for Stable LAGPâ€Based Lithium Metal Batteries. Advanced Materials Interfaces, 2021, 8, 2100072.	3.7	22
17	Lewis Acidity Organoboronâ€Modified Liâ€Rich Cathode Materials for Highâ€Performance Lithiumâ€Ion Batteries. Advanced Materials Interfaces, 2021, 8, 2002113.	3.7	11
18	Phosphorous-doped bimetallic sulfides embedded in heteroatom-doped carbon nanoarrays for flexible all-solid-state supercapacitors. Science China Materials, 2021, 64, 2439-2453.	6.3	19

#	Article	IF	CITATIONS
19	Enhanced Air and Electrochemical Stability of Li ₇ P ₃ S ₁₁ –Based Solid Electrolytes Enabled by Aliovalent Substitution of SnO ₂ . Advanced Materials Interfaces, 2021, 8, 2100368.	3.7	24
20	Mechanistic Insights into the Structural Modulation of Transition Metal Selenides to Boost Potassium Ion Storage Stability. ACS Nano, 2021, 15, 14697-14708.	14.6	44
21	Ag _{<i>x</i>} Mn ₈ O ₁₆ Cathode Enables High-Performance Aqueous Li-Ion Hybrid Supercapacitors. Energy & Fuels, 2021, 35, 15101-15107.	5.1	3
22	Effects of functional carbon nanodots on water hyacinth response to Cd/Pb stress: Implication for phytoremediation. Journal of Environmental Management, 2021, 299, 113624.	7.8	15
23	Highly flexible electromagnetic interference shielding films based on ultrathin Ni/Ag composites on paper substrates. Journal of Materials Science, 2021, 56, 5570-5580.	3.7	13
24	ZnCl ₂ -activated carbon from soybean dregs as a high efficiency adsorbent for cationic dye removal: isotherm, kinetic, and thermodynamic studies. Environmental Technology (United) Tj ETQq0 0 0 rg	BT ‡Q2 verlo	ck 2140 Tf 50 5
25	Enhanced bioaccumulation efficiency and tolerance for Cd (â;) in Arabidopsis thaliana by amphoteric nitrogen-doped carbon dots. Ecotoxicology and Environmental Safety, 2020, 190, 110108.	6.0	21
26	Stable Lithium Anode of Li–O ₂ Batteries in a Wet Electrolyte Enabled by a High-Current Treatment. Journal of Physical Chemistry Letters, 2020, 11, 172-178.	4.6	16
27	Structural Engineering of SnS ₂ Encapsulated in Carbon Nanoboxes for Highâ€Performance Sodium/Potassiumâ€Ion Batteries Anodes. Small, 2020, 16, e2005023.	10.0	120
28	Impacts of surface chemistry of functional carbon nanodots on the plant growth. Ecotoxicology and Environmental Safety, 2020, 206, 111220.	6.0	22
29	Ultrathin carbon nanosheets for highly efficient capacitive K-ion and Zn-ion storage. Journal of Materials Chemistry A, 2020, 8, 22874-22885.	10.3	58
30	Flexible rCO @ Nonwoven Fabrics' Membranes Guide Stable Lithium Metal Anodes for Lithium–Oxygen Batteries. ACS Applied Energy Materials, 2020, 3, 7944-7951.	5.1	9
31	Ballâ€Milling Strategy for Fast and Stable Potassiumâ€ion Storage in Antimonyâ€ <i>Carbon</i> Composite Anodes. ChemElectroChem, 2020, 7, 4587-4593.	3.4	6
32	Enhanced Electrochemical Performance of Li _{1.2} [Mn _{0.54} Co _{0.13} Ni _{0.13}]O ₂ Enabled by Synergistic Effect of Li _{1.5} Na _{0.5} SiO ₃ Modification. Advanced Materials Interfaces, 2020, 7, 2000378.	3.7	9
33	Ag doped urchin-like α-MnO2 toward efficient and bifunctional electrocatalysts for Li-O2 batteries. Nano Research, 2020, 13, 2356-2364.	10.4	27
34	Promotion effect of nitrogen-doped functional carbon nanodots on the early growth stage of plants. Oxford Open Materials Science, 2020, 1, .	1.8	5
35	High Current Enabled Stable Lithium Anode for Ultralong Cycling Life of Lithium–Oxygen Batteries. ACS Applied Materials & Interfaces, 2019, 11, 30793-30800.	8.0	21
36	Artificial Solid Electrolyte Interphase Coating to Reduce Lithium Trapping in Silicon Anode for High Performance Lithiumâ€kon Batteries. Advanced Materials Interfaces, 2019, 6, 1901187.	3.7	54

#	Article	IF	CITATIONS
37	Li metal-free rechargeable all-solid-state Li2S/Si battery based on Li7P3S11 electrolyte. Journal of Solid State Electrochemistry, 2019, 23, 3145-3151.	2.5	23
38	Nitrogen-doped carbon derived from pre-oxidized pitch for surface dominated potassium-ion storage. Carbon, 2019, 155, 601-610.	10.3	110
39	Selective Chemical Enhancement via Graphene Oxide in Infrared Attenuated Total Reflection Spectroscopy. Journal of Physical Chemistry C, 2019, 123, 25286-25293.	3.1	5
40	Boron nitride doped Li7P3S11 solid electrolyte with improved interfacial compatibility and application in all-solid-state Li/S battery. Journal of Materials Science: Materials in Electronics, 2019, 30, 19119-19125.	2.2	20
41	A Review of the Role of Solvents in Formation of High-Quality Solution-Processed Perovskite Films. ACS Applied Materials & Interfaces, 2019, 11, 7639-7654.	8.0	113
42	Self-supported multidimensional Ni–Fe phosphide networks with holey nanosheets for high-performance all-solid-state supercapacitors. Journal of Materials Chemistry A, 2019, 7, 17386-17399.	10.3	72
43	Effective synthetic strategy for Zn _{0.76} Co _{0.24} S encapsulated in stabilized N-doped carbon nanoarchitecture towards ultra-long-life hybrid supercapacitors. Journal of Materials Chemistry A, 2019, 7, 14670-14680.	10.3	59
44	Surfaceâ€Confined SnS ₂ @C@rGO as Highâ€Performance Anode Materials for Sodium―and Potassiumâ€Ion Batteries. ChemSusChem, 2019, 12, 2689-2700.	6.8	98
45	Hierarchically porous carbon supported Sn4P3 as a superior anode material for potassium-ion batteries. Energy Storage Materials, 2019, 23, 367-374.	18.0	120
46	Adsorptive Removal of Cationic Dye from Aqueous Solution by Graphene Oxide/Cellulose Acetate Composite. Journal of Nanoscience and Nanotechnology, 2019, 19, 4535-4542.	0.9	11
47	High efficient adsorption and storage of iodine on S, N co-doped graphene aerogel. Journal of Hazardous Materials, 2019, 373, 705-715.	12.4	73
48	Tunable synthesis of LixMnO2 nanowires for aqueous Li-ion hybrid supercapacitor with high rate capability and ultra-long cycle life. Journal of Power Sources, 2019, 413, 302-309.	7.8	63
49	Fabrication of Perovskite Films with Long Carrier Lifetime for Efficient Perovskite Solar Cells from Low-Toxicity 1-Ethyl-2-Pyrrolidone. ACS Applied Energy Materials, 2019, 2, 320-327.	5.1	4
50	Surface-enhanced infrared attenuated total reflection spectroscopy via carbon nanodots for small molecules in aqueous solution. Analytical and Bioanalytical Chemistry, 2019, 411, 1863-1871.	3.7	10
51	Investigation on Crystallization of CH ₃ NH ₃ PbI ₃ Perovskite and Its Intermediate Phase from Polar Aprotic Solvents. Crystal Growth and Design, 2019, 19, 959-965.	3.0	22
52	Potassium gluconate-derived N/S Co-doped carbon nanosheets as superior electrode materials for supercapacitors and sodium-ion batteries. Journal of Power Sources, 2019, 414, 308-316.	7.8	87
53	Crystallization of CH ₃ NH ₃ PbI _{3â^'x} Br _x perovskite from micro-droplets of lead acetate precursor solution. CrystEngComm, 2018, 20, 3058-3065.	2.6	5
54	Green, Scalable, and Controllable Fabrication of Nanoporous Silicon from Commercial Alloy Precursors for High-Energy Lithium-Ion Batteries. ACS Nano, 2018, 12, 4993-5002.	14.6	269

#	Article	IF	CITATIONS
55	High annealing temperature induced rapid grain coarsening for efficient perovskite solar cells. Journal of Colloid and Interface Science, 2018, 524, 483-489.	9.4	35
56	Fabrication of Perovskite Films with Large Columnar Grains via Solvent-Mediated Ostwald Ripening for Efficient Inverted Perovskite Solar Cells. ACS Applied Energy Materials, 2018, 1, 868-875.	5.1	58
57	Synergic mechanism of adsorption and metal-free catalysis for phenol degradation by N-doped graphene aerogel. Chemosphere, 2018, 191, 389-399.	8.2	54
58	High-performance red phosphorus/carbon nanofibers/graphene free-standing paper anode for sodium ion batteries. Journal of Materials Chemistry A, 2018, 6, 1574-1581.	10.3	65
59	Surfactant-dependent flower- and grass-like Zn _{0.76} Co _{0.24} S/Co ₃ S ₄ for high-performance all-solid-state asymmetric supercapacitors. Journal of Materials Chemistry A, 2018, 6, 22830-22839.	10.3	60
60	Micron-Sized Nanoporous Antimony with Tunable Porosity for High-Performance Potassium-Ion Batteries. ACS Nano, 2018, 12, 12932-12940.	14.6	223
61	Hierarchical layer-by-layer porous FeCo ₂ S ₄ @Ni(OH) ₂ arrays for all-solid-state asymmetric supercapacitors. Journal of Materials Chemistry A, 2018, 6, 20480-20490.	10.3	102
62	Facile Fabrication of Nitrogenâ€Doped Porous Carbon as Superior Anode Material for Potassiumâ€lon Batteries. Advanced Energy Materials, 2018, 8, 1802386.	19.5	393
63	Lithium Dendrite Suppression and Enhanced Interfacial Compatibility Enabled by an Ex Situ SEI on Li Anode for LAGP-Based All-Solid-State Batteries. ACS Applied Materials & Interfaces, 2018, 10, 18610-18618.	8.0	123
64	Hollow nanoporous red phosphorus as an advanced anode for sodium-ion batteries. Journal of Materials Chemistry A, 2018, 6, 12992-12998.	10.3	36
65	Enhanced heterogeneous activation of peroxydisulfate by S, N co-doped graphene via controlling S, N functionalization for the catalytic decolorization of dyes in water. Chemosphere, 2018, 210, 120-128.	8.2	25
66	Self-supporting soft carbon fibers as binder-free and flexible anodes for high-performance sodium-ion batteries. Materials Technology, 2018, 33, 810-814.	3.0	12
67	Sandwichâ€Like FeCl ₃ @C as Highâ€Performance Anode Materials for Potassiumâ€ion Batteries. Advanced Materials Interfaces, 2018, 5, 1800606.	3.7	53
68	Nanoporous Red Phosphorus on Reduced Graphene Oxide as Superior Anode for Sodium-Ion Batteries. ACS Nano, 2018, 12, 7380-7387.	14.6	120
69	Metal–Organic Framework Derived Iron Sulfide–Carbon Core–Shell Nanorods as a Conversion-Type Battery Material. ACS Sustainable Chemistry and Engineering, 2017, 5, 5039-5048.	6.7	82
70	Control of the morphology of PbI ₂ films for efficient perovskite solar cells by strong Lewis base additives. Journal of Materials Chemistry C, 2017, 5, 7458-7464.	5.5	57
71	Graphene encapsulated Fe ₃ O ₄ nanorods assembled into a mesoporous hybrid composite used as a high-performance lithium-ion battery anode material. Materials Chemistry Frontiers, 2017, 1, 1185-1193.	5.9	41
72	Enhanced performance of perovskite solar cells by strengthening a self-embedded solvent annealing effect in perovskite precursor films. RSC Advances, 2017, 7, 49144-49150.	3.6	11

#	Article	lF	CITATIONS
73	Elucidating the Key Role of a Lewis Base Solvent in the Formation of Perovskite Films Fabricated from the Lewis Adduct Approach. ACS Applied Materials & Interfaces, 2017, 9, 32868-32875.	8.0	47
74	Tensile properties of millimeter-long multi-walled carbon nanotubes. Scientific Reports, 2017, 7, 9512.	3.3	66
75	A heart-coronary arteries structure of carbon nanofibers/graphene/silicon composite anode for high performance lithium ion batteries. Scientific Reports, 2017, 7, 9642.	3.3	28
76	Walnut-inspired microsized porous silicon/graphene core–shell composites for high-performance lithium-ion battery anodes. Nano Research, 2017, 10, 4274-4283.	10.4	72
77	High performance agar/graphene oxide composite aerogel for methylene blue removal. Carbohydrate Polymers, 2017, 155, 345-353.	10.2	251
78	Hierarchical Porous Chitosan Sponges as Robust and Recyclable Adsorbents for Anionic Dye Adsorption. Scientific Reports, 2017, 7, 18054.	3.3	94
79	Perovskite Solar Cells Fabricated by Using an Environmental Friendly Aprotic Polar Additive of 1,3-Dimethyl-2-imidazolidinone. Nanoscale Research Letters, 2017, 12, 632.	5.7	19
80	A novel Lithium/Sodium hybrid aqueous electrolyte for hybrid supercapacitors based on LiFePO ₄ and activated carbon. Functional Materials Letters, 2016, 09, 1642008.	1.2	15
81	Enhancing the safety and electrochemical performance of ether based lithium sulfur batteries by introducing an efficient flame retarding additive. RSC Advances, 2016, 6, 53560-53565.	3.6	19
82	Metal–organic framework-derived graphene@nitrogen doped carbon@ultrafine TiO ₂ nanocomposites as high rate and long-life anodes for sodium ion batteries. Chemical Communications, 2016, 52, 12810-12812.	4.1	48
83	Unveil the Sizeâ€Dependent Mechanical Behaviors of Individual CNT/SiC Composite Nanofibers by In Situ Tensile Tests in SEM. Small, 2016, 12, 4486-4491.	10.0	20
84	Mental-organic framework derived CuO hollow spheres as high performance anodes for sodium ion battery. Materials Technology, 2016, 31, 497-500.	3.0	17
85	MnO ₂ nanotubes with a water soluble binder as high performance sodium storage materials. RSC Advances, 2016, 6, 103579-103584.	3.6	18
86	Facile hydrothermal growth of VO2 nanowire, nanorod and nanosheet arrays as binder free cathode materials for sodium batteries. RSC Advances, 2016, 6, 14314-14320.	3.6	13
87	A novel bifunctional additive for 5 V-class, high-voltage lithium ion batteries. RSC Advances, 2016, 6, 7224-7228.	3.6	23
88	Biphenyl as overcharge protection additive for nonaqueous sodium batteries. RSC Advances, 2015, 5, 96649-96652.	3.6	20
89	Nonflammable electrolyte for safer non-aqueous sodium batteries. Journal of Materials Chemistry A, 2015, 3, 14539-14544.	10.3	64