Xiang Sun

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11463054/publications.pdf

Version: 2024-02-01

279798 580821 3,152 25 25 23 citations h-index g-index papers 25 25 25 5849 docs citations times ranked citing authors all docs

#	Article	IF	Citations
1	High-rate lithiation-induced reactivation of mesoporous hollow spheres for long-lived lithium-ion batteries. Nature Communications, 2014, 5, 4526.	12.8	586
2	Largeâ€Area Freestanding Graphene Paper for Superior Thermal Management. Advanced Materials, 2014, 26, 4521-4526.	21.0	386
3	Flexible Pillared Grapheneâ€Paper Electrodes for Highâ€Performance Electrochemical Supercapacitors. Small, 2012, 8, 452-459.	10.0	297
4	Atomic Layer Deposition of TiO ₂ on Graphene for Supercapacitors. Journal of the Electrochemical Society, 2012, 159, A364-A369.	2.9	186
5	Porous nickel oxide nano-sheets for high performance pseudocapacitance materials. Journal of Materials Chemistry, 2011, 21, 16581.	6.7	175
6	Morphology controlled high performance supercapacitor behaviour of the Ni–Co binary hydroxide system. Journal of Power Sources, 2013, 238, 150-156.	7.8	175
7	Flexible free-standing graphene–TiO2 hybrid paper for use as lithium ion battery anode materials. Carbon, 2013, 51, 322-326.	10.3	156
8	Rapid synthesis of nitrogen-doped graphene for a lithium ion battery anode with excellent rate performance and super-long cyclic stability. Physical Chemistry Chemical Physics, 2014, 16, 1060-1066.	2.8	146
9	Graphene-Wrapped Mesoporous Cobalt Oxide Hollow Spheres Anode for High-Rate and Long-Life Lithium Ion Batteries. Journal of Physical Chemistry C, 2014, 118, 2263-2272.	3.1	119
10	Synthesis of ZnO quantum dot/graphene nanocomposites by atomic layer deposition with high lithium storage capacity. Journal of Materials Chemistry A, 2014, 2, 7319-7326.	10.3	117
11	Pseudocapacitance of Amorphous TiO ₂ Thin Films Anchored to Graphene and Carbon Nanotubes Using Atomic Layer Deposition. Journal of Physical Chemistry C, 2013, 117, 22497-22508.	3.1	102
12	Temperature-Dependent Morphology Evolution and Surface Plasmon Absorption of Ultrathin Gold Island Films. Journal of Physical Chemistry C, 2012, 116, 9000-9008.	3.1	82
13	ZnO/graphene nanocomposite fabricated by high energy ball milling with greatly enhanced lithium storage capability. Electrochemistry Communications, 2013, 34, 312-315.	4.7	76
14	Atomic layer deposition of amorphous TiO ₂ on graphene as an anode for Li-ion batteries. Nanotechnology, 2013, 24, 424002.	2.6	76
15	Amorphous vanadium oxide coating on graphene by atomic layer deposition for stable high energy lithium ion anodes. Chemical Communications, 2014, 50, 10703.	4.1	61
16	Amorphous Ultrathin SnO ₂ Films by Atomic Layer Deposition on Graphene Network as Highly Stable Anodes for Lithium-Ion Batteries. ACS Applied Materials & Samp; Interfaces, 2015, 7, 27735-27742.	8.0	59
17	Stabilizing an amorphous V ₂ O ₅ /carbon nanotube paper electrode with conformal TiO ₂ coating by atomic layer deposition for lithium ion batteries. Journal of Materials Chemistry A, 2016, 4, 537-544.	10.3	57
18	Microwave Absorption Characteristics of Conventionally Heated Nonstoichiometric Ferrous Oxide. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2011, 42, 2259-2263.	2.2	55

XIANG SUN

#	Article	IF	CITATION
19	Amorphous Ultrathin TiO ₂ Atomic Layer Deposition Films on Carbon Nanotubes as Anodes for Lithium Ion Batteries. Journal of the Electrochemical Society, 2015, 162, A974-A981.	2.9	53
20	3D WO3 nanowires/graphene nanocomposite with improved reversible capacity and cyclic stability for lithium ion batteries. Materials Letters, 2013, 108, 29-32.	2.6	51
21	Porous Fe2O3 nanorods anchored on nitrogen-doped graphenes and ultrathin Al2O3 coating by atomic layer deposition for long-lived lithium ion battery anode. Carbon, 2014, 76, 141-147.	10.3	46
22	Tailoring oxidation degrees of graphene oxide by simple chemical reactions. Applied Physics Letters, 2011, 99, .	3.3	42
23	Electrospray deposition of a Co ₃ O ₄ nanoparticles–graphene composite for a binder-free lithium ion battery electrode. RSC Advances, 2014, 4, 1521-1525.	3.6	29
24	Controlled synthesis of MnSn(OH)6/graphene nanocomposites and their electrochemical properties as capacitive materials. Journal of Solid State Chemistry, 2012, 185, 172-179.	2.9	16
25	Ultrathin gold island films for time-dependent temperature sensing. Journal of Nanoparticle Research, 2014, 16, 1.	1.9	4