Daniel L Mclaughlin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1146296/publications.pdf

Version: 2024-02-01

331670 276875 1,746 45 21 citations h-index papers

41 g-index 45 45 45 1661 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Do geographically isolated wetlands influence landscape functions?. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 1978-1986.	7.1	297
2	Enhancing protection for vulnerable waters. Nature Geoscience, 2017, 10, 809-815.	12.9	141
3	Geographically isolated wetlands are part of the hydrological landscape. Hydrological Processes, 2016, 30, 153-160.	2.6	127
4	Realizing ecosystem services: wetland hydrologic function along a gradient of ecosystem condition. Ecological Applications, 2013, 23, 1619-1631.	3.8	105
5	A significant nexus: Geographically isolated wetlands influence landscape hydrology. Water Resources Research, 2014, 50, 7153-7166.	4.2	104
6	Integrating geographically isolated wetlands into land management decisions. Frontiers in Ecology and the Environment, 2017, 15, 319-327.	4.0	92
7	Depressional wetlands affect watershed hydrological, biogeochemical, and ecological functions. Ecological Applications, 2018, 28, 953-966.	3.8	91
8	Analyzing Trade-Offs, Synergies, and Drivers among Timber Production, Carbon Sequestration, and Water Yield in Pinus elliotii Forests in Southeastern USA. Forests, 2014, 5, 1409-1431.	2.1	68
9	Managing Forests for Increased Regional Water Yield in the Southeastern U.S. Coastal Plain. Journal of the American Water Resources Association, 2013, 49, 953-965.	2.4	62
10	Quantifying spatiotemporal variation in headwater stream length using flow intermittency sensors. Environmental Monitoring and Assessment, 2019, 191, 226.	2.7	54
11	Estimating restorable wetland water storage at landscape scales. Hydrological Processes, 2018, 32, 305-313.	2.6	44
12	Ecosystem specific yield for estimating evapotranspiration and groundwater exchange from diel surface water variation. Hydrological Processes, 2014, 28, 1495-1506.	2.6	40
13	Thermal artifacts in measurements of fineâ€scale water level variation. Water Resources Research, 2011, 47, .	4.2	37
14	Drying Rates of Ephemeral Wetlands: Implications for Breeding Amphibians. Wetlands, 2017, 37, 545-557.	1.5	37
15	A watershed-scale model for depressional wetland-rich landscapes. Journal of Hydrology X, 2018, 1, 100002.	1.6	31
16	The socioecohydrology of rainwater harvesting in India: understanding water storage and release dynamics across spatial scales. Hydrology and Earth System Sciences, 2016, 20, 2629-2647.	4.9	30
17	From salamanders to greenhouse gases: does upland management affect wetland functions?. Frontiers in Ecology and the Environment, 2018, 16, 14-19.	4.0	27
18	Forested versus herbaceous wetlands: Can management mitigate ecohydrologic regime shifts from invasive emerald ash borer?. Journal of Environmental Management, 2018, 222, 436-446.	7.8	27

#	Article	IF	Citations
19	Modeling Connectivity of Nonâ€floodplain Wetlands: Insights, Approaches, and Recommendations. Journal of the American Water Resources Association, 2019, 55, 559-577.	2.4	26
20	Microtopography is a fundamental organizing structure of vegetation and soil chemistry in black ash wetlands. Biogeosciences, 2020, 17, 901-915.	3.3	25
21	Evidence of biogeomorphic patterning in a lowâ€relief karst landscape. Earth Surface Processes and Landforms, 2014, 39, 2027-2037.	2.5	22
22	Quantifying wetland microtopography with terrestrial laser scanning. Remote Sensing of Environment, 2019, 232, 111271.	11.0	22
23	Vulnerable Waters are Essential to Watershed Resilience. Ecosystems, 2023, 26, 1-28.	3.4	21
24	Ecohydrologic processes and soil thickness feedbacks control limestone-weathering rates in a karst landscape. Chemical Geology, 2019, 527, 118774.	3.3	20
25	Wetland Connectivity Thresholds and Flow Dynamics From Stage Measurements. Water Resources Research, 2019, 55, 6018-6032.	4.2	19
26	Pattern and structure of microtopography implies autogenic origins in forested wetlands. Hydrology and Earth System Sciences, 2019, 23, 5069-5088.	4.9	18
27	Hydrologic implications of smoldering fires in wetland landscapes. Freshwater Science, 2015, 34, 1394-1405.	1.8	16
28	Selenium Bioaccumulation Across Trophic Levels and Along a Longitudinal Gradient in Headwater Streams. Environmental Toxicology and Chemistry, 2020, 39, 692-704.	4.3	15
29	A little relief: Ecological functions and autogenesis of wetland microtopography. Wiley Interdisciplinary Reviews: Water, 2021, 8, .	6.5	14
30	Mass balance implies Holocene development of a low-relief karst patterned landscape. Chemical Geology, 2019, 527, 118782.	3.3	13
31	Short- and long-term hydrologic controls on smouldering fire in wetland soils. International Journal of Wildland Fire, 2019, 28, 177.	2.4	11
32	Impacts to water quality and biota persist in mining-influenced Appalachian streams. Science of the Total Environment, 2020, 717, 137216.	8.0	11
33	Linking ecosystem function and hydrologic regime to inform restoration of a forested peatland. Journal of Environmental Management, 2019, 233, 342-351.	7.8	10
34	Local Storage Dynamics of Individual Wetlands Predict Wetlandscape Discharge. Water Resources Research, 2020, 56, e2020WR027581.	4.2	9
35	The Ecohydrology of a pioneer wetland species and a drastically altered landscape. Ecohydrology, 2012, 5, 656-667.	2.4	8
36	Stream phosphorus dynamics of minimally impacted coastal plain watersheds. Hydrological Processes, 2017, 31, 1636-1649.	2.6	8

#	Article	IF	CITATIONS
37	Hydrologic variability in black ash wetlands: Implications for vulnerability to emerald ash borer. Hydrological Processes, 2021, 35, e14014.	2.6	8
38	Remotely-sensed evapotranspiration for informed urban forest management. Landscape and Urban Planning, 2021, 210, 104069.	7.5	7
39	A proposed method for estimating interception from near-surface soil moisture response. Hydrology and Earth System Sciences, 2020, 24, 1859-1870.	4.9	6
40	Fertilization has negligible effects on nutrient export and stream biota in two North Florida forested watersheds. Forest Ecology and Management, 2020, 465, 118096.	3.2	6
41	Red maple dominance and community homogenization in a disturbed forested wetland. Wetlands Ecology and Management, 2021, 29, 599-615.	1.5	6
42	<i>Inâ€Situ</i> Quantification and Prediction of Water Yield From Southern US Pine Forests. Water Resources Research, 2022, 58, .	4.2	4
43	Installation Matters: Implications for In Situ Water Quality Monitoring. Water Resources Research, 2021, 57, e2020WR028294.	4.2	3
44	Comparison of benthic macroinvertebrate assessment methods along a salinity gradient in headwater streams. Environmental Monitoring and Assessment, 2021, 193, 765.	2.7	3
45	Estimating effective specific yield in inundated conditions: a comment on a recent application. Ecohydrology, 2014, 7, 1245-1247.	2.4	1