Jessica D Weaver

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1146178/publications.pdf

Version: 2024-02-01

623734 23 875 14 citations h-index papers

17 g-index 25 25 25 1451 docs citations times ranked citing authors all docs

888059

#	Article	IF	CITATIONS
1	Vasculogenic hydrogel enhances islet survival, engraftment, and function in leading extrahepatic sites. Science Advances, 2017, 3, e1700184.	10.3	130
2	Local release of dexamethasone from macroporous scaffolds accelerates islet transplant engraftment by promotion of anti-inflammatory M2 macrophages. Biomaterials, 2017, 114, 71-81.	11.4	125
3	Local immunomodulation with Fas ligand-engineered biomaterials achieves allogeneic islet graft acceptance. Nature Materials, 2018, 17, 732-739.	27.5	124
4	Design of a vascularized synthetic poly(ethylene glycol) macroencapsulation device for islet transplantation. Biomaterials, 2018, 172, 54-65.	11.4	94
5	Antioxidant cerium oxide nanoparticle hydrogels for cellular encapsulation. Acta Biomaterialia, 2015, 16, 136-144.	8.3	62
6	Engineered microenvironments for synergistic VEGF – Integrin signalling during vascularization. Biomaterials, 2017, 126, 61-74.	11.4	61
7	Immunotherapy via PD-L1–presenting biomaterials leads to long-term islet graft survival. Science Advances, 2020, 6, eaba5573.	10.3	54
8	Synthetic poly(ethylene glycol)-based microfluidic islet encapsulation reduces graft volume for delivery to highly vascularized and retrievable transplant site. American Journal of Transplantation, 2019, 19, 1315-1327.	4.7	48
9	Enhancing Clinical Islet Transplantation through Tissue Engineeering Strategies. Journal of Diabetes Science and Technology, 2010, 4, 1238-1247.	2.2	47
10	Controlled Release of Dexamethasone from Organosilicone Constructs for Local Modulation of Inflammation in Islet Transplantation. Tissue Engineering - Part A, 2015, 21, 2250-2261.	3.1	31
11	Experimental evaluation and computational modeling of the effects of encapsulation on the time-profile of glucose-stimulated insulin release of pancreatic islets. BioMedical Engineering OnLine, 2015, 14, 28.	2.7	25
12	Inhibition of TBK1/IKKÎμ Promotes Regeneration of Pancreatic β-cells. Scientific Reports, 2018, 8, 15587.	3.3	24
13	Linkage Groups within Thiol–Ene Photoclickable PEG Hydrogels Control In Vivo Stability. Advanced Healthcare Materials, 2019, 8, e1900371.	7.6	21
14	PEG hydrogel containing calcium-releasing particles and mesenchymal stromal cells promote vessel maturation. Acta Biomaterialia, 2018, 67, 53-65.	8.3	19
15	Biomaterial-based approaches to engineering immune tolerance. Biomaterials Science, 2020, 8, 7014-7032.	5.4	7
16	A Method for Organoid Transplantation and Whole-Mount Visualization of Post-Engraftment Vascularization. Methods in Molecular Biology, 2021, 2258, 259-272.	0.9	2
17	Good vibrations to treat inflammatory arthritis. Science Translational Medicine, 2019, 11, .	12.4	1
18	Engineering Artificial Niches for Regenerative Medicine., 2019, , 103-103.		0

#	Article	IF	CITATIONS
19	A breath of fresh air for donor lungs. Science Translational Medicine, 2019, 11, .	12.4	О
20	Bedazzled biomaterials: Crystallized drugs prevent implant fibrosis. Science Translational Medicine, 2019, 11, .	12.4	0
21	Interception! A decoy scaffold disrupts autoimmunity. Science Translational Medicine, 2019, 11, .	12.4	O
22	A new hope? Yoda1 uses the $\hat{a} \in \infty$ force $\hat{a} \in \infty$ force cancer cells to TRAIL-mediated apoptosis. Science Translational Medicine, 2019, 11, .	12.4	0
23	Organoid optimization: Engineering a better cell therapy to treat type 1 diabetes. Science Translational Medicine, 2020, 12, .	12.4	0