
Andy J Chien

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11459506/publications.pdf Version: 2024-02-01

ANDVICHIEN

#	Article	IF	CITATIONS
1	Phototherapy: Safe and Effective for Challenging Skin Conditions in Older Adults. , 2021, 108, E15-E21.		0
2	Association between Lithium Use andÂMelanoma Risk and Mortality: AÂPopulation-Based Study. Journal of Investigative Dermatology, 2017, 137, 2087-2091.	0.7	11
3	Control of the interface between heterotypic cell populations reveals the mechanism of intercellular transfer of signaling proteins. Integrative Biology (United Kingdom), 2015, 7, 364-372.	1.3	7
4	WNT5A enhances resistance of melanoma cells to targeted BRAF inhibitors. Journal of Clinical Investigation, 2014, 124, 2877-2890.	8.2	144
5	Targeted BRAF Inhibition Impacts Survival in Melanoma Patients with High Levels of Wnt/β-Catenin Signaling. PLoS ONE, 2014, 9, e94748.	2.5	35
6	Protein Kinase PKN1 Represses Wnt/β-Catenin Signaling in Human Melanoma Cells. Journal of Biological Chemistry, 2013, 288, 34658-34670.	3.4	29
7	FAM129B is a novel regulator of Wnt/β-catenin signal transduction in melanoma cells. F1000Research, 2013, 2, 134.	1.6	12
8	FAM129B is a novel regulator of Wnt/β-catenin signal transduction in melanoma cells. F1000Research, 2013, 2, 134.	1.6	21
9	Activation of Wnt/β-Catenin Signaling Increases Apoptosis in Melanoma Cells Treated with Trail. PLoS ONE, 2013, 8, e69593.	2.5	78
10	Wnt/β-Catenin Signaling and AXIN1 Regulate Apoptosis Triggered by Inhibition of the Mutant Kinase BRAF ^{V600E} in Human Melanoma. Science Signaling, 2012, 5, ra3.	3.6	150
11	WLS inhibits melanoma cell proliferation through the βâ€catenin signalling pathway and induces spontaneous metastasis. EMBO Molecular Medicine, 2012, 4, 1294-1307.	6.9	29
12	Targeting Wnt Pathways in Disease. Cold Spring Harbor Perspectives in Biology, 2012, 4, a008086-a008086.	5.5	93
13	Regulating the response to targeted MEK inhibition in melanoma. Cell Cycle, 2012, 11, 3724-3730.	2.6	40
14	Dysregulation of Wnt/β-Catenin Signaling in Gastrointestinal Cancers. Gastroenterology, 2012, 142, 219-232.	1.3	403
15	Re: Specific targeting of Wnt/Â-catenin signaling in human melanoma cells by a dietary triterpene lupeol. Carcinogenesis, 2011, 32, 120-120.	2.8	2
16	A Re-evaluation of the "Oncogenic―Nature of Wnt/β-catenin Signaling in Melanoma and Other Cancers. Current Oncology Reports, 2010, 12, 314-318.	4.0	110
17	Chemical-Genetic Screen Identifies Riluzole as an Enhancer of Wnt∫β-catenin Signaling in Melanoma. Chemistry and Biology, 2010, 17, 1177-1182.	6.0	49
18	Wnt and Related Signaling Pathways in Melanomagenesis. Cancers, 2010, 2, 1000-1012.	3.7	4

ANDY J CHIEN

#	Article	IF	CITATIONS
19	Activated Wnt/ß-catenin signaling in melanoma is associated with decreased proliferation in patient tumors and a murine melanoma model. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 1193-1198.	7.1	313
20	A Wnt Survival Guide: From Flies to Human Disease. Journal of Investigative Dermatology, 2009, 129, 1614-1627.	0.7	327
21	CTLA-4 Is a Direct Target of Wnt/β-Catenin Signaling and Is Expressed in Human Melanoma Tumors. Journal of Investigative Dermatology, 2008, 128, 2870-2879.	0.7	68
22	WNTS and WNT receptors as therapeutic tools and targets in human disease processes. Frontiers in Bioscience - Landmark, 2007, 12, 448.	3.0	45
23	Hereditary woolly hair and keratosis pilaris. Journal of the American Academy of Dermatology, 2006, 54, S35-S39.	1.2	49
24	Eccrine angiomatous hamartoma with elements of an arterio-venous malformation: a newly recognized variant. Journal of Cutaneous Pathology, 2006, 33, 433-436.	1.3	25
25	Processing of native caspase-14 occurs at an atypical cleavage site in normal epidermal differentiation. Biochemical and Biophysical Research Communications, 2002, 296, 911-917.	2.1	355
26	Complexes of the α1C and β Subunits Generate the Necessary Signal for Membrane Targeting of Class C L-type Calcium Channels. Journal of Biological Chemistry, 1999, 274, 2137-2144.	3.4	114
27	Identification of the Sites Phosphorylated by Cyclic AMP-Dependent Protein Kinase on the β ₂ Subunit of L-Type Voltage-Dependent Calcium Channels ^{â€} . Biochemistry, 1999, 38, 10361-10370.	2.5	123
28	Post-translational modifications of beta subunits of voltage-dependent calcium channels. Journal of Bioenergetics and Biomembranes, 1998, 30, 377-386.	2.3	34
29	Sorcin Associates with the Pore-forming Subunit of Voltage-dependent L-type Ca2+ Channels. Journal of Biological Chemistry, 1998, 273, 18930-18935.	3.4	108
30	Membrane Targeting of L-type Calcium Channels. Journal of Biological Chemistry, 1998, 273, 23590-23597.	3.4	106
31	Identification and Subcellular Localization of the Subunits of L-type Calcium Channels and Adenylyl Cyclase in Cardiac Myocytes. Journal of Biological Chemistry, 1997, 272, 19401-19407.	3.4	158
32	Identification of Palmitoylation Sites within the L-type Calcium Channel β2a Subunit and Effects on Channel Function. Journal of Biological Chemistry, 1996, 271, 26465-26468.	3.4	179
33	Structure and Regulation of L-Type Calcium Channels. Trends in Cardiovascular Medicine, 1996, 6, 265-273.	4.9	50
34	Roles of a Membrane-localized βSubunit in the Formation and Targeting of Functional L-type Ca2+ Channels. Journal of Biological Chemistry, 1995, 270, 30036-30044.	3.4	248