
J Kelley Bentley

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11456281/publications.pdf Version: 2024-02-01

I KELLEV RENTLEV

#	Article	IF	CITATIONS
1	Rhinovirus C Infection Induces Type 2 Innate Lymphoid Cell Expansion and Eosinophilic Airway Inflammation. Frontiers in Immunology, 2021, 12, 649520.	4.8	20
2	Deficient inflammasome activation permits an exaggerated asthma phenotype in rhinovirus C-infected immature mice. Mucosal Immunology, 2021, 14, 1369-1380.	6.0	5
3	Pellino-1 Regulates the Responses of the Airway to Viral Infection. Frontiers in Cellular and Infection Microbiology, 2020, 10, 456.	3.9	12
4	ILâ€1β prevents ILC2 expansion, type 2 cytokine secretion, and mucus metaplasia in response to earlyâ€life rhinovirus infection in mice. Allergy: European Journal of Allergy and Clinical Immunology, 2020, 75, 2005-2019.	5.7	17
5	Early-life heterologous rhinovirus infections induce an exaggerated asthma-like phenotype. Journal of Allergy and Clinical Immunology, 2020, 146, 571-582.e3.	2.9	19
6	Inflammasome activation is required for human rhinovirus-induced airway inflammation in naive and allergen-sensitized mice. Mucosal Immunology, 2019, 12, 958-968.	6.0	30
7	Myristoylated rhinovirus VP4 protein activates TLR2-dependent proinflammatory gene expression. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2019, 317, L57-L70.	2.9	11
8	The artificial placenta: Continued lung development during extracorporeal support in a preterm lamb model. Journal of Pediatric Surgery, 2018, 53, 1896-1903.	1.6	34
9	Construction of a recombinant rhinovirus accommodating fluorescent marker expression. Influenza and Other Respiratory Viruses, 2018, 12, 717-727.	3.4	8
10	Enterovirus D68 infection induces IL-17–dependent neutrophilic airway inflammation and hyperresponsiveness. JCI Insight, 2018, 3, .	5.0	23
11	IFN-γ Blocks Development of an Asthma Phenotype in Rhinovirus-Infected Baby Mice by Inhibiting Type 2 Innate Lymphoid Cells. American Journal of Respiratory Cell and Molecular Biology, 2017, 56, 242-251.	2.9	45
12	RORα-dependent type 2 innate lymphoid cells are required and sufficient for mucous metaplasia in immature mice. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2017, 312, L983-L993.	2.9	32
13	The Innate Cytokines IL-25, IL-33, and TSLP Cooperate in the Induction of Type 2 Innate Lymphoid Cell Expansion and Mucous Metaplasia in Rhinovirus-Infected Immature Mice. Journal of Immunology, 2017, 199, 1308-1318.	0.8	114
14	Toll-like receptor 2–expressing macrophages are required and sufficient for rhinovirus-induced airway inflammation. Journal of Allergy and Clinical Immunology, 2016, 138, 1619-1630.	2.9	41
15	Hyperoxic Exposure of Immature Mice Increases the Inflammatory Response to Subsequent Rhinovirus Infection: Association with Danger Signals. Journal of Immunology, 2016, 196, 4692-4705.	0.8	17
16	Rhinovirus Infection Induces Interleukin-13 Production from CD11b-Positive, M2-Polarized Exudative Macrophages. American Journal of Respiratory Cell and Molecular Biology, 2015, 52, 205-216.	2.9	35
17	Periostin is required for maximal airways inflammation andÂhyperresponsiveness in mice. Journal of Allergy and Clinical Immunology, 2014, 134, 1433-1442.	2.9	74
18	Reduced platelet-derived growth factor receptor expression is a primary feature of human bronchopulmonary dysplasia. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2014, 307, L231-L239.	2.9	86

J KELLEY BENTLEY

#	Article	IF	CITATIONS
19	Rhinovirus-Induced Macrophage Cytokine Expression Does Not Require Endocytosis or Replication. American Journal of Respiratory Cell and Molecular Biology, 2014, 50, 974-984.	2.9	20
20	Macrophage activation state determines the response to rhinovirus infection in a mouse model of allergic asthma. Respiratory Research, 2014, 15, 63.	3.6	39
21	Neonatal rhinovirus induces mucous metaplasia and airways hyperresponsiveness through IL-25 and type 2 innate lymphoid cells. Journal of Allergy and Clinical Immunology, 2014, 134, 429-439.e8.	2.9	153
22	Rhinovirus colocalizes with CD68- and CD11b-positive macrophages following experimental infection in humans. Journal of Allergy and Clinical Immunology, 2013, 132, 758-761.e3.	2.9	23
23	Macrophage/epithelial cell CCL2 contributes to rhinovirus-induced hyperresponsiveness and inflammation in a mouse model of allergic airways disease. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2013, 304, L162-L169.	2.9	57
24	Glycogen synthase kinase-3β/β-catenin signaling regulates neonatal lung mesenchymal stromal cell myofibroblastic differentiation. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2012, 303, L439-L448.	2.9	53
25	Periostin promotes fibrosis and predicts progression in patients with idiopathic pulmonary fibrosis. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2012, 303, L1046-L1056.	2.9	223
26	Neonatal Rhinovirus Infection Induces Mucous Metaplasia and Airways Hyperresponsiveness. Journal of Immunology, 2012, 188, 2894-2904.	0.8	58
27	Neonatal Periostin Knockout Mice Are Protected from Hyperoxia-Induced Alveolar Simplication. PLoS ONE, 2012, 7, e31336.	2.5	62
28	Akt activation induces hypertrophy without contractile phenotypic maturation in airway smooth muscle. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2011, 300, L701-L709.	2.9	21
29	MDA5 and TLR3 Initiate Pro-Inflammatory Signaling Pathways Leading to Rhinovirus-Induced Airways Inflammation and Hyperresponsiveness. PLoS Pathogens, 2011, 7, e1002070.	4.7	107
30	Ovalbumin sensitization and challenge increases the number of lung cells possessing a mesenchymal stromal cell phenotype. Respiratory Research, 2010, 11, 127.	3.6	38
31	Isolation of Tracheal Aspirate Mesenchymal Stromal Cells Predicts Bronchopulmonary Dysplasia. Pediatrics, 2010, 126, e1127-e1133.	2.1	101
32	Rhinovirus Infection of Allergen-Sensitized and -Challenged Mice Induces Eotaxin Release from Functionally Polarized Macrophages. Journal of Immunology, 2010, 185, 2525-2535.	0.8	104
33	Pulmonary artery smooth muscle hypertrophy: roles of glycogen synthase kinase-3β and p70 ribosomal S6 kinase. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2010, 298, L793-L803.	2.9	17
34	Autocrine production of TGF-β1 promotes myofibroblastic differentiation of neonatal lung mesenchymal stem cells. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2010, 298, L735-L743.	2.9	111
35	p70 Ribosomal S6 Kinase Is Required for Airway Smooth Muscle Cell Size Enlargement but Not Increased Contractile Protein Expression. American Journal of Respiratory Cell and Molecular Biology, 2010, 42, 744-752.	2.9	27
36	Airway smooth muscle hyperplasia and hypertrophy correlate with glycogen synthase kinase-3î² phosphorylation in a mouse model of asthma. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2009, 296, L176-L184.	2.9	45

J KELLEY BENTLEY

#	Article	IF	CITATIONS
37	Inhibition of Glycogen Synthase Kinase-3β Is Sufficient for Airway Smooth Muscle Hypertrophy. Journal of Biological Chemistry, 2008, 283, 10198-10207.	3.4	51
38	Airway Smooth Muscle Growth in Asthma: Proliferation, Hypertrophy, and Migration. Proceedings of the American Thoracic Society, 2008, 5, 89-96.	3.5	151
39	Human Rhinovirus 1B Exposure Induces Phosphatidylinositol 3-Kinase–dependent Airway Inflammation in Mice. American Journal of Respiratory and Critical Care Medicine, 2008, 177, 1111-1121.	5.6	120
40	Regulation of airway smooth muscle α-actin expression by glucocorticoids. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2007, 292, L99-L106.	2.9	47
41	Cooperative effects of rhinovirus and TNF-α on airway epithelial cell chemokine expression. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2007, 293, L1021-L1028.	2.9	26
42	Lung Cells from Neonates Show a Mesenchymal Stem Cell Phenotype. American Journal of Respiratory and Critical Care Medicine, 2007, 175, 1158-1164.	5.6	118
43	Rhinovirus Activates Interleukin-8 Expression via a Src/p110β Phosphatidylinositol 3-Kinase/Akt Pathway in Human Airway Epithelial Cells. Journal of Virology, 2007, 81, 1186-1194.	3.4	49
44	Transforming Growth Factor-Î ² Induces Airway Smooth Muscle Hypertrophy. American Journal of Respiratory Cell and Molecular Biology, 2006, 34, 247-254.	2.9	95
45	H. influenzae potentiates airway epithelial cell responses to rhinovirus by increasing ICAMâ€1 and TLR3 expression. FASEB Journal, 2006, 20, 2121-2123.	0.5	136
46	4E-Binding Protein Phosphorylation and Eukaryotic Initiation Factor-4E Release Are Required for Airway Smooth Muscle Hypertrophy. American Journal of Respiratory Cell and Molecular Biology, 2005, 33, 195-202.	2.9	50
47	Phosphatidylinositol 3-Kinase Is Required for Rhinovirus-induced Airway Epithelial Cell Interleukin-8 Expression. Journal of Biological Chemistry, 2005, 280, 36952-36961.	3.4	93
48	Nerve growth factor inhibits PC12 cell PDE 2 phosphodiesterase activity and increases PDE 2 binding to phosphoproteins. Journal of Neurochemistry, 2001, 76, 1252-1263.	3.9	10
49	Chapter 3 The role of multiple isozymes in the regulation of cyclic nucleotide synthesis and degradation. Principles of Medical Biology, 1996, , 77-122.	0.1	Ο
50	The Calmodulin-dependent Phosphodiesterase Gene PDE1C Encodes Several Functionally Different Splice Variants in a Tissue-specific Manner. Journal of Biological Chemistry, 1996, 271, 25699-25706.	3.4	138
51	Regulation and function of cyclic nucleotides. Current Opinion in Cell Biology, 1992, 4, 233-240.	5.4	73
52	Sequence comparison of the 63-, 61-, and 59-kDa calmodulin-dependent cyclic nucleotide phosphodiesterases. Biochemistry, 1991, 30, 7940-7947.	2.5	48
53	[43] Phosphorylation and dephosphorylation of sea urchin sperm cell guanylyl cyclase. Methods in Enzymology, 1991, 195, 461-466.	1.0	2
54	Receptor-Mediated Activation of Detergent-Solu bilized Guanylate Cyclase1. Biology of Reproduction, 1988, 39, 639-647.	2.7	28

J KELLEY BENTLEY

#	Article	IF	CITATIONS
55	Pertussis Toxin ADP-Ribosylation of Apparent GTP-Binding Protein Alpha-Subunits in Spermatozoan Membranes. Annals of the New York Academy of Sciences, 1987, 513, 595-597.	3.8	Ο
56	Stimulation of Sea Urchin Spermatozoan Guanylate Cyclase in Response to Egg-Associated Peptides. Annals of the New York Academy of Sciences, 1987, 513, 598-601.	3.8	0
57	Spermatozoa contain a guanine nucleotide-binding protein ADP-ribosylated by pertussis toxin. Biochemical and Biophysical Research Communications, 1986, 138, 728-734.	2.1	75
58	Receptor-Mediated Responses of Plasma Membranes Isolated from Lytechinus Pictus Spermatozoa1. Biology of Reproduction, 1986, 35, 1249-1259.	2.7	14
59	Retention of the Speract Receptor by Isolated Plasma Membranes of Sea Urchin Spermatozoa1. Biology of Reproduction, 1986, 34, 413-421.	2.7	25
60	The Interaction of Egg Peptides with Spermatozoa. Advances in Experimental Medicine and Biology, 1986, 205, 145-163.	1.6	1