Denes V Agoston

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11453967/publications.pdf

Version: 2024-02-01

172457 189892 2,657 61 29 50 citations h-index g-index papers 61 61 61 3329 docs citations times ranked citing authors all docs

#	Article	IF	Citations
1	Targeting the Cerebrovascular System: Next-Generation Biomarkers and Treatment for Mild Traumatic Brain Injury. Neuroscientist, 2022, 28, 594-612.	3.5	15
2	Incorporating Blood Flow in Nerve Injury and Regeneration Assessment. Frontiers in Surgery, 2022, 9, 862478.	1.4	10
3	Identification of clinically relevant biomarkers of epileptogenesis â€" a strategic roadmap. Nature Reviews Neurology, 2021, 17, 231-242.	10.1	54
4	The Known Unknowns: An Overview of the State of Blood-Based Protein Biomarkers of Mild Traumatic Brain Injury. Journal of Neurotrauma, 2021, 38, 2652-2666.	3.4	35
5	COVID-19 and Traumatic Brain Injury (TBI); What We Can Learn From the Viral Pandemic to Better Understand the Biology of TBI, Improve Diagnostics and Develop Evidence-Based Treatments. Frontiers in Neurology, 2021, 12, 752937.	2.4	3
6	Serum Protein Biomarker Findings Reflective of Oxidative Stress and Vascular Abnormalities in Male, but Not Female, Collision Sport Athletes. Frontiers in Neurology, 2020, 11, 549624.	2.4	20
7	Shortened telomeres and serum protein biomarker abnormalities in collision sport athletes regardless of concussion history and sex. Journal of Concussion, 2020, 4, 205970022097560.	0.6	13
8	A novel rat model of heterotopic ossification after polytrauma with traumatic brain injury. Bone, 2020, 133, 115263.	2.9	16
9	Influence of Blood–Brain Barrier Integrity on Brain Protein Biomarker Clearance in Severe Traumatic Brain Injury: A Longitudinal Prospective Study. Journal of Neurotrauma, 2020, 37, 1381-1391.	3.4	46
10	Modelling traumatic brain injury and posttraumatic epilepsy in rodents. Neurobiology of Disease, 2019, 123, 8-19.	4.4	46
11	Protein biomarkers of epileptogenicity after traumatic brain injury. Neurobiology of Disease, 2019, 123, 59-68.	4.4	12
12	Clinically Relevant Outcome Measures for Experimental Traumatic Brain Injury (TBI) Studies. Neuromethods, 2019, , 263-294.	0.3	0
13	Repeated mild traumatic brain injuries induce persistent changes in plasma protein and magnetic resonance imaging biomarkers in the rat. Scientific Reports, 2019, 9, 14626.	3.3	35
14	How to Translate Time: The Temporal Aspects of Rodent and Human Pathobiological Processes in Traumatic Brain Injury. Journal of Neurotrauma, 2019, 36, 1724-1737.	3.4	34
15	Big Data, Artificial Intelligence, and Machine Learning in Neurotrauma. , 2019, , 53-75.		5
16	Repeated mild blast exposure in young adult rats results in dynamic and persistent microstructural changes in the brain. Neurolmage: Clinical, 2018, 18, 60-73.	2.7	28
17	Oculomotor Cognitive Control Abnormalities in Australian Rules Football Players with a History of Concussion. Journal of Neurotrauma, 2018, 35, 730-738.	3.4	29
18	A Comparative Study of Two Blast-Induced Traumatic Brain Injury Models: Changes in Monoamine and Galanin Systems Following Single and Repeated Exposure. Frontiers in Neurology, 2018, 9, 479.	2.4	19

#	Article	IF	CITATIONS
19	Understanding the complexities of traumatic brain injury: A big data approach to a big disease. Behavioural Brain Research, 2018, 340, 172-173.	2.2	4
20	Biofluid biomarkers of traumatic brain injury. Brain Injury, 2017, 31, 1195-1203.	1.2	157
21	Modeling the Long-Term Consequences of Repeated Blast-Induced Mild Traumatic Brain Injuries. Journal of Neurotrauma, 2017, 34, S-44-S-52.	3.4	23
22	Big Data in traumatic brain injury; promise and challenges. Concussion, 2017, 2, CNC44.	1.0	25
23	How to Translate Time? The Temporal Aspect of Human and Rodent Biology. Frontiers in Neurology, 2017, 8, 92.	2.4	124
24	Editorial: When Physics Meets Biology; Biomechanics and Biology of Traumatic Brain Injury. Frontiers in Neurology, 2016, 7, 91.	2.4	5
25	Behavioral, blood and magnetic resonance imaging biomarkers of experimental mild traumatic brain injury. Scientific Reports, 2016, 6, 28713.	3.3	72
26	The effect of concomitant peripheral injury on traumatic brain injury pathobiology and outcome. Journal of Neuroinflammation, 2016, 13, 90.	7.2	102
27	Bench-to-Bedside and Bedside Back to the Bench; Seeking a Better Understanding of the Acute Pathophysiological Process in Severe Traumatic Brain Injury. Frontiers in Neurology, 2015, 6, 47.	2.4	15
28	The Temporal Pattern of Changes in Serum Biomarker Levels Reveals Complex and Dynamically Changing Pathologies after Exposure to a Single Low-Intensity Blast in Mice. Frontiers in Neurology, 2015, 6, 114.	2.4	66
29	Great insight created by tiny holes; celebrating 40 years of brain micropunch technique. Frontiers in Neuroanatomy, 2014, 8, 61.	1.7	1
30	Molecular mechanisms of increased cerebral vulnerability after repeated mild blast-induced traumatic brain injury. Translational Proteomics, 2014, 3, 22-37.	1.2	18
31	Diffusion Tensor Imaging Reveals Acute Subcortical Changes after Mild Blast-Induced Traumatic Brain Injury. Scientific Reports, 2014, 4, 4809.	3.3	43
32	The Terminal Pathway of the Complement System Is Activated in Focal Penetrating But Not in Mild Diffuse Traumatic Brain Injury. Journal of Neurotrauma, 2013, 30, 1954-1965.	3.4	17
33	Longâ€ŧerm consequences of single and multiple mild blast exposure on select physiological parameters and bloodâ€based biomarkers. Electrophoresis, 2013, 34, 2229-2233.	2.4	47
34	Of Timescales, Animal Models, and Human Disease: The 50th Anniversary of C. elegans as a Biological Model. Frontiers in Neurology, 2013, 4, 129.	2.4	7
35	Serum-Based Protein Biomarkers in Blast-Induced Traumatic Brain Injury Spectrum Disorder. Frontiers in Neurology, 2012, 3, 107.	2.4	65
36	Acute Minocycline Treatment Mitigates the Symptoms of Mild Blast-Induced Traumatic Brain Injury. Frontiers in Neurology, 2012, 3, 111.	2.4	134

#	Article	lF	Citations
37	A Model for Mild Traumatic Brain Injury that Induces Limited Transient Memory Impairment and Increased Levels of Axon Related Serum Biomarkers. Frontiers in Neurology, 2012, 3, 115.	2.4	67
38	Bench-To-Bedside and Bedside Back to the Bench; Coordinating Clinical and Experimental Traumatic Brain Injury Studies. Frontiers in Neurology, 2012, 3, 3.	2.4	23
39	Where will the (New) Drugs for Traumatic Brain Injury Treatment be Coming From?. Frontiers in Neurology, 2012, 3, 27.	2.4	7
40	Factors Affecting Blast Traumatic Brain Injury. Journal of Neurotrauma, 2011, 28, 2145-2153.	3.4	107
41	Stress and Traumatic Brain Injury: A Behavioral, Proteomics, and Histological Study. Frontiers in Neurology, 2011, 2, 12.	2.4	105
42	The Effect of Enriched Environment on the Outcome of Traumatic Brain Injury; A Behavioral, Proteomics, and Histological Study. Frontiers in Neuroscience, 2011, 5, 42.	2.8	107
43	Time-Dependent Changes in Serum Biomarker Levels after Blast Traumatic Brain Injury. Journal of Neurotrauma, 2011, 28, 1121-1126.	3.4	94
44	Reverse phase protein microarray technology in traumatic brain injury. Journal of Neuroscience Methods, 2010, 192, 96-101.	2.5	37
45	Vascular Endothelial Growth Factor Is Involved in Mediating Increased <i>De Novo</i> Hippocampal Neurogenesis in Response to Traumatic Brain Injury. Journal of Neurotrauma, 2010, 27, 541-553.	3.4	83
46	Proteomic Biomarkers for Blast Neurotrauma: Targeting Cerebral Edema, Inflammation, and Neuronal Death Cascades. Journal of Neurotrauma, 2009, 26, 901-911.	3.4	68
47	Inhibition of VEGF receptor 2 increased cell death of dentate hilar neurons after traumatic brain injury. Experimental Neurology, 2009, 220, 400-403.	4.1	34
48	SATB2 interacts with chromatinâ€remodeling molecules in differentiating cortical neurons. European Journal of Neuroscience, 2008, 27, 865-873.	2.6	120
49	Members of the NuRD Chromatin Remodeling Complex Interact with AUF1 in Developing Cortical Neurons. Cerebral Cortex, 2008, 18, 2909-2919.	2.9	18
50	Effect of Penetrating Brain Injury on Aquaporin-4 Expression Using a Rat Model. Journal of Neurotrauma, 2007, 24, 1609-1617.	3.4	28
51	lkaros is expressed in developing striatal neurons and involved in enkephalinergic differentiation. Journal of Neurochemistry, 2007, 102, 1805-1816.	3.9	35
52	Isolation and Characterization of SATB2, a Novel AT-rich DNA Binding Protein Expressed in Development- and Cell-Specific Manner in the Rat Brain. Neurochemical Research, 2006, 31, 237-46.	3.3	83
53	AUF1 Is Expressed in the Developing Brain, Binds to AT-rich Double-stranded DNA, and Regulates Enkephalin Gene Expression. Journal of Biological Chemistry, 2006, 281, 28889-28900.	3.4	23
54	Farâ€upstream elements are dispensable for tissueâ€specific proenkephalin expression using a Creâ€mediated knockâ€in strategy. Journal of Neurochemistry, 2003, 84, 689-697.	3.9	15

#	Article	IF	CITATION
55	Septamer Element-Binding Proteins in Neuronal and Glial Differentiation. Journal of Neuroscience, 2000, 20, 1073-1084.	3.6	11
56	Isolation and Structural and Genetic Analysis of the Mouse Enkephalin Gene and its $d(AC/TG)$ nRepeats. DNA Sequence, 1998, 9, 217-226.	0.7	10
57	Sample and probe: a novel approach for identifying development-specific cis-elements of the enkephalin gene. Molecular Brain Research, 1997, 52, 98-111.	2.3	18
58	Myelin transcription factor 1 (Myt1) of the oligodendrocyte lineage, along with a closely related CCHC zinc finger, is expressed in developing neurons in the mammalian central nervous system. Journal of Neuroscience Research, 1997, 50, 272-290.	2.9	100
59	Transcriptional Controls in the Oligodendrocyte Lineage. , 1997, , 182-190.		6
60	Distribution of VIP mRNA and two distinct VIP binding sites in the developing rat brain: Relation to ontogenic events. Journal of Comparative Neurology, 1994, 342, 186-205.	1.6	72
61	Spontaneous electrical activity regulates vasoactive intestinal peptide expression in dissociated spinal cord cell cultures. Molecular Brain Research, 1991, 10, 235-240.	2.3	41