Guangjin Hou

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11450980/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	DNP NMR reveals the hidden surface C–C bond growth mechanism over ZnAlO during syngas conversion. Journal of Energy Chemistry, 2022, 67, 640-644.	12.9	7
2	A mechanistic study of syngas conversion to light olefins over OXZEO bifunctional catalysts: insights into the initial carbon–carbon bond formation on the oxide. Catalysis Science and Technology, 2022, 12, 1289-1295.	4.1	13
3	Solid-State NMR Dipolar and Chemical Shift Anisotropy Recoupling Techniques for Structural and Dynamical Studies in Biological Systems. Chemical Reviews, 2022, 122, 9880-9942.	47.7	23
4	77Se-13C based dipolar correlation experiments to map selenium sites in microcrystalline proteins. Journal of Biomolecular NMR, 2022, 76, 29.	2.8	0
5	Nerve network-inspired solid polymer electrolytes (NN-SPE) for fast and single-ion lithium conduction. Energy Storage Materials, 2022, 49, 575-582.	18.0	13
6	Quantitatively Mapping the Distribution of Intrinsic Acid Sites in Mordenite Zeolite by High-Field ²³ Na Solid-State Nuclear Magnetic Resonance. Journal of Physical Chemistry Letters, 2022, 13, 5186-5194.	4.6	6
7	Oxygenate-based routes regulate syngas conversion over oxide–zeolite bifunctional catalysts. Nature Catalysis, 2022, 5, 594-604.	34.4	22
8	The effect of the position of cross-linkers on the structure and microenvironment of PPh ₃ moiety in porous organic polymers. Journal of Materials Chemistry A, 2021, 9, 9165-9174.	10.3	15
9	"X Factor―in the Structure and Anion Exchange of Layered Yttrium Hydroxides. Journal of Physical Chemistry C, 2021, 125, 7251-7258.	3.1	6
10	Acidity and Local Confinement Effect in Mordenite Probed by Solid-State NMR Spectroscopy. Journal of Physical Chemistry Letters, 2021, 12, 2413-2422.	4.6	17
11	Recent progress in dipolar recoupling techniques under fast MAS in solid-state NMR spectroscopy. Solid State Nuclear Magnetic Resonance, 2021, 112, 101711.	2.3	17
12	Effects of Proximity-Dependent Metal Migration on Bifunctional Composites Catalyzed Syngas to Olefins. ACS Catalysis, 2021, 11, 9729-9737.	11.2	41
13	The Role of Organic and Inorganic Structure-Directing Agents in Selective Al Substitution of Zeolite. Journal of Physical Chemistry Letters, 2021, 12, 9398-9406.	4.6	16
14	Accurate heteronuclear distance measurements at all magic-angle spinning frequencies in solid-state NMR spectroscopy. Chemical Science, 2021, 12, 11554-11564.	7.4	12
15	89Y chemical shift anisotropy: a sensitive structural probe of layered yttrium hydroxides revealed by solid-state NMR spectroscopy and DFT calculations. Physical Chemistry Chemical Physics, 2021, 23, 27244-27252.	2.8	3
16	Homogeneous and Fast Ion Conduction of PEOâ€Based Solidâ€State Electrolyte at Low Temperature. Advanced Functional Materials, 2020, 30, 2007172.	14.9	246
17	Atomic-resolution structure of HIV-1 capsid tubes by magic-angle spinning NMR. Nature Structural and Molecular Biology, 2020, 27, 863-869.	8.2	58
18	Revisiting of Tetragonal NaVPO ₄ F: A High Energy Density Cathode for Sodium-Ion Batteries. ACS Applied Materials & Interfaces, 2020, 12, 30510-30519.	8.0	22

GUANGJIN HOU

#	Article	IF	CITATIONS
19	Câ^'C Bond Formation in Syngas Conversion over Zinc Sites Grafted on ZSMâ€5 Zeolite. Angewandte Chemie - International Edition, 2020, 59, 6529-6534.	13.8	34
20	Dynamic Nuclear Polarization Magic-Angle Spinning Nuclear Magnetic Resonance Combined with Molecular Dynamics Simulations Permits Detection of Order and Disorder in Viral Assemblies. Journal of Physical Chemistry B, 2019, 123, 5048-5058.	2.6	31
21	Insights into the Site-Selective Adsorption of Methanol and Water in Mordenite Zeolite by ¹²⁹ Xe NMR Spectroscopy. Journal of Physical Chemistry C, 2019, 123, 17368-17374.	3.1	9
22	Determination of accurate backbone chemical shift tensors in microcrystalline proteins by integrating MAS NMR and QM/MM. Physical Chemistry Chemical Physics, 2018, 20, 9543-9553.	2.8	9
23	Measurement of proton chemical shift anisotropy in solid-state NMR spectroscopy. Solid State Nuclear Magnetic Resonance, 2018, 93, 16-28.	2.3	25
24	Superior Na-storage performance of molten-state-blending-synthesized monoclinic NaVPO ₄ F nanoplates for Na-ion batteries. Journal of Materials Chemistry A, 2018, 6, 24201-24209.	10.3	39
25	Heterogeneous Rh/CPOL-BP&P(OPh)3 catalysts for hydroformylation of 1-butene: The formation and evolution of the active species. Journal of Catalysis, 2018, 368, 197-206.	6.2	45
26	Mapping protein–protein interactions by double-REDOR-filtered magic angle spinning NMR spectroscopy. Journal of Biomolecular NMR, 2017, 67, 95-108.	2.8	12
27	CryoEM Structure Refinement by Integrating NMR Chemical Shifts with Molecular Dynamics Simulations. Journal of Physical Chemistry B, 2017, 121, 3853-3863.	2.6	38
28	Highly selective methanol-to-olefin reaction on pyridine modified H-mordenite. Journal of Energy Chemistry, 2017, 26, 354-358.	12.9	17
29	Toward Closing the Gap: Quantum Mechanical Calculations and Experimentally Measured Chemical Shifts of a Microcrystalline Lectin. Journal of Physical Chemistry B, 2017, 121, 3574-3585.	2.6	9
30	Quenching protein dynamics interferes with HIV capsid maturation. Nature Communications, 2017, 8, 1779.	12.8	56
31	Expanding the horizons for structural analysis of fully protonated protein assemblies by NMR spectroscopy at MAS frequencies above 100ÂkHz. Solid State Nuclear Magnetic Resonance, 2017, 87, 117-125.	2.3	88
32	Cyclophilin A stabilizes the HIV-1 capsid through a novel non-canonical binding site. Nature Communications, 2016, 7, 10714.	12.8	126
33	Role of 12-Ring Channels of Mordenite in DME Carbonylation Investigated by Solid-State NMR. Journal of Physical Chemistry C, 2016, 120, 22526-22531.	3.1	56
34	HIV-1 Capsid Function Is Regulated by Dynamics: Quantitative Atomic-Resolution Insights by Integrating Magic-Angle-Spinning NMR, QM/MM, and MD. Journal of the American Chemical Society, 2016, 138, 14066-14075.	13.7	48
35	Improving dipolar recoupling for site-specific structural and dynamics studies in biosolids NMR: windowed RN-symmetry sequences. Physical Chemistry Chemical Physics, 2016, 18, 4035-4044.	2.8	27
36	Dynamic Nuclear Polarization Enhanced MAS NMR Spectroscopy for Structural Analysis of HIV-1 Protein Assemblies. Journal of Physical Chemistry B, 2016, 120, 329-339.	2.6	49

GUANGJIN HOU

#	Article	IF	CITATIONS
37	Dynamic allostery governs cyclophilin A–HIV capsid interplay. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 14617-14622.	7.1	76
38	Characterizing Phosphorus Speciation of Chesapeake Bay Sediments Using Chemical Extraction, ³¹ P NMR, and X-ray Absorption Fine Structure Spectroscopy. Environmental Science & Technology, 2015, 49, 203-211.	10.0	69
39	NMR Crystallography for Structural Characterization of Oxovanadium(V) Complexes: Deriving Coordination Geometry and Detecting Weakly Coordinated Ligands at Atomic Resolution in the Solid State. Inorganic Chemistry, 2015, 54, 1363-1374.	4.0	15
40	Internal Dynamics of Dynactin CAP-Gly Is Regulated by Microtubules and Plus End Tracking Protein EB1. Journal of Biological Chemistry, 2015, 290, 1607-1622.	3.4	11
41	MAS NMR of HIV-1 protein assemblies. Journal of Magnetic Resonance, 2015, 253, 10-22.	2.1	13
42	Magic angle spinning NMR of viruses. Progress in Nuclear Magnetic Resonance Spectroscopy, 2015, 86-87, 21-40.	7.5	23
43	⁵¹ V NMR Crystallography of Vanadium Chloroperoxidase and Its Directed Evolution P395D/L241V/T343A Mutant: Protonation Environments of the Active Site. Journal of the American Chemical Society, 2015, 137, 5618-5628.	13.7	30
44	RF inhomogeneity and how it controls CPMAS. Solid State Nuclear Magnetic Resonance, 2015, 72, 17-26.	2.3	34
45	Analysis of local molecular motions of aromatic sidechains in proteins by 2D and 3D fast MAS NMR spectroscopy and quantum mechanical calculations. Physical Chemistry Chemical Physics, 2015, 17, 28789-28801.	2.8	19
46	Atomic-resolution structure of the CAP-Gly domain of dynactin on polymeric microtubules determined by magic angle spinning NMR spectroscopy. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 14611-14616.	7.1	46
47	Combined zero-quantum and spin-diffusion mixing for efficient homonuclear correlation spectroscopy under fast MAS: broadband recoupling and detection of long-range correlations. Journal of Biomolecular NMR, 2015, 61, 7-20.	2.8	23
48	Fast magic angle spinning NMR with heteronucleus detection for resonance assignments and structural characterization of fully protonated proteins. Journal of Biomolecular NMR, 2014, 60, 219-229.	2.8	12
49	A Magicâ€Angleâ€Spinning NMR Spectroscopy Method for the Siteâ€Specific Measurement of Proton Chemicalâ€Shift Anisotropy in Biological and Organic Solids. Israel Journal of Chemistry, 2014, 54, 171-183.	2.3	25
50	Accurate measurement of heteronuclear dipolar couplings by phase-alternating R-symmetry (PARS) sequences in magic angle spinning NMR spectroscopy. Journal of Chemical Physics, 2014, 141, 104202.	3.0	42
51	Sensitivity gains, linearity, and spectral reproducibility in nonuniformly sampled multidimensional MAS NMR spectra of high dynamic range. Journal of Biomolecular NMR, 2014, 59, 57-73.	2.8	31
52	Three-Dimensional Structure of CAP-Gly Domain of Mammalian Dynactin Determined by Magic Angle Spinning NMR Spectroscopy: Conformational Plasticity and Interactions with End-Binding Protein EB1. Journal of Molecular Biology, 2013, 425, 4249-4266.	4.2	20
53	Effect of ancillary ligand on electronic structure as probed by 51V solid-state NMR spectroscopy for vanadium–o-dioxolene complexes. CrystEngComm, 2013, 15, 8776.	2.6	17
54	Magic Angle Spinning NMR Studies of Protein Assemblies: Recent Advances in Methodology and Applications. Annual Reports on NMR Spectroscopy, 2013, , 293-357.	1.5	4

GUANGJIN HOU

#	Article	IF	CITATIONS
55	Probing Structure and Dynamics of Protein Assemblies by Magic Angle Spinning NMR Spectroscopy. Accounts of Chemical Research, 2013, 46, 2047-2058.	15.6	75
56	Broadband homonuclear correlation spectroscopy driven by combined <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si1.gif" overflow="scroll"><mml:mrow><mml:mtext>R</mml:mtext><mml:msubsup><mml:mrow><mml:mn>2sequences under fast magic angle spinning for NMR structural analysis of organic and biological</mml:mn></mml:mrow></mml:msubsup></mml:mrow></mml:math 	ı> 2/1 mml:r	mr a%2 < mml:
57	Magic Angle Spinning NMR Reveals Sequence-Dependent Structural Plasticity, Dynamics, and the Spacer Peptide 1 Conformation in HIV-1 Capsid Protein Assemblies. Journal of the American Chemical Society, 2013, 135, 17793-17803.	13.7	60
58	Multidimensional Magic Angle Spinning NMR Spectroscopy for Site-Resolved Measurement of Proton Chemical Shift Anisotropy in Biological Solids. Journal of the American Chemical Society, 2013, 135, 1358-1368.	13.7	66
59	Motions on the Millisecond Time Scale and Multiple Conformations of HIV-1 Capsid Protein: Implications for Structural Polymorphism of CA Assemblies. Journal of the American Chemical Society, 2012, 134, 6455-6466.	13.7	83
60	Redox Activity in a Vanadium(V)– <i>o</i> â€Dioxolene Complex Is Modulated by Protonation State As Indicated by ⁵¹ V Solidâ€State NMR Spectroscopy and Density Functional Theory. European Journal of Inorganic Chemistry, 2012, 2012, 4644-4651.	2.0	9
61	Enhanced Sensitivity by Nonuniform Sampling Enables Multidimensional MAS NMR Spectroscopy of Protein Assemblies. Journal of Physical Chemistry B, 2012, 116, 7416-7427.	2.6	89
62	Recoupling of chemical shift anisotropy by R-symmetry sequences in magic angle spinning NMR spectroscopy. Journal of Chemical Physics, 2012, 137, 134201.	3.0	78
63	¹ H– ¹³ C/ ¹ H– ¹⁵ N Heteronuclear Dipolar Recoupling by R-Symmetry Sequences Under Fast Magic Angle Spinning for Dynamics Analysis of Biological and Organic Solids. Journal of the American Chemical Society, 2011, 133, 18646-18655.	13.7	87
64	Characterization of Noninnocent Metal Complexes Using Solid-State NMR Spectroscopy: <i>o</i> -Dioxolene Vanadium Complexes. Inorganic Chemistry, 2011, 50, 9794-9803.	4.0	43
65	Spin Diffusion Driven by R-Symmetry Sequences: Applications to Homonuclear Correlation Spectroscopy in MAS NMR of Biological and Organic Solids. Journal of the American Chemical Society, 2011, 133, 3943-3953.	13.7	58
66	Breaking the T1 Constraint for Quantitative Measurement in Magic Angle Spinning Solid-State NMR Spectroscopy. Journal of the American Chemical Society, 2010, 132, 5538-5539.	13.7	20
67	Determination of relative tensor orientations by γ-encoded chemical shift anisotropy/heteronuclear dipolar coupling 3D NMR spectroscopy in biological solids. Physical Chemistry Chemical Physics, 2010, 12, 14873.	2.8	47
68	Quantitative cross-polarization NMR spectroscopy in uniformly 13C-labeled solids. Chemical Physics Letters, 2006, 421, 356-360.	2.6	33
69	Towards uniform enhancement in solid-state cross polarization magnetic angle spinning NMR: A scheme incorporating cross polarization with rotational resonance. Journal of Chemical Physics,	3.0	17