
Rolf Renne

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1145050/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Lytic growth of Kaposi's sarcoma–associated herpesvirus (human herpesvirus 8) in culture. Nature Medicine, 1996, 2, 342-346.	30.7	1,024
2	Kaposi's Sarcoma-Associated Herpesvirus Encodes an Ortholog of miR-155. Journal of Virology, 2007, 81, 12836-12845.	3.4	421
3	Reactivation of Kaposi's Sarcoma-Associated Herpesvirus Infection from Latency by Expression of the ORF 50 Transactivator, a Homolog of the EBV R Protein. Virology, 1998, 252, 304-312.	2.4	401
4	A Cluster of Latently Expressed Genes in Kaposi's Sarcoma-Associated Herpesvirus. Journal of Virology, 1998, 72, 8309-8315.	3.4	375
5	Cloning and Identification of a MicroRNA Cluster within the Latency-Associated Region of Kaposi's Sarcoma-Associated Herpesvirus. Journal of Virology, 2005, 79, 9301-9305.	3.4	374
6	Identification of Cellular Genes Targeted by KSHV-Encoded MicroRNAs. PLoS Pathogens, 2007, 3, e65.	4.7	277
7	Limited Transmission of Kaposi's Sarcoma-Associated Herpesvirus in Cultured Cells. Journal of Virology, 1998, 72, 5182-5188.	3.4	226
8	The Latency-Associated Nuclear Antigen of Kaposi's Sarcoma-Associated Herpesvirus Supports Latent DNA Replication in Dividing Cells. Journal of Virology, 2002, 76, 11677-11687.	3.4	212
9	Epigenetic Regulation of Kaposi's Sarcoma-Associated Herpesvirus Latency by Virus-Encoded MicroRNAs That Target Rta and the Cellular Rbl2-DNMT Pathway. Journal of Virology, 2010, 84, 2697-2706.	3.4	204
10	Modulation of Cellular and Viral Gene Expression by the Latency-Associated Nuclear Antigen of Kaposi's Sarcoma-Associated Herpesvirus. Journal of Virology, 2001, 75, 458-468.	3.4	189
11	A Complex Translational Program Generates Multiple Novel Proteins from the Latently Expressed Kaposin (K12) Locus of Kaposi's Sarcoma-Associated Herpesvirus. Journal of Virology, 1999, 73, 5722-5730.	3.4	186
12	Inflammatory Cytokines and the Reactivation of Kaposi's Sarcoma-Associated Herpesvirus Lytic Replication. Virology, 2000, 266, 17-25.	2.4	178
13	DNA Binding and Modulation of Gene Expression by the Latency-Associated Nuclear Antigen of Kaposi's Sarcoma-Associated Herpesvirus. Journal of Virology, 2001, 75, 7882-7892.	3.4	175
14	Ago HITS-CLIP Expands Understanding of Kaposi's Sarcoma-associated Herpesvirus miRNA Function in Primary Effusion Lymphomas. PLoS Pathogens, 2012, 8, e1002884.	4.7	167
15	Latency-associated Nuclear Antigen (LANA) Cooperatively Binds to Two Sites within the Terminal Repeat, and Both Sites Contribute to the Ability of LANA to Suppress Transcription and to Facilitate DNA Replication. Journal of Biological Chemistry, 2002, 277, 27401-27411.	3.4	164
16	KSHV-encoded miRNAs target MAF to induce endothelial cell reprogramming. Genes and Development, 2010, 24, 195-205.	5.9	148
17	Long-Term-Infected Telomerase-Immortalized Endothelial Cells: a Model for Kaposi's Sarcoma-Associated Herpesvirus Latency In Vitro and In Vivo. Journal of Virology, 2006, 80, 4833-4846.	3.4	117
18	The Latency-associated Nuclear Antigen of Kaposi's Sarcoma-associated Herpesvirus Modulates Cellular Gene Expression and Protects Lymphoid Cells from p16 INK4A-induced Cell Cycle Arrest. Journal of Biological Chemistry, 2005, 280, 3862-3874.	3.4	116

#	Article	IF	CITATIONS
19	KSHV LANA inhibits TGF-β signaling through epigenetic silencing of the TGF-β type II receptor. Blood, 2008, 111, 4731-4740.	1.4	115
20	The Epstein Barr virus circRNAome. PLoS Pathogens, 2018, 14, e1007206.	4.7	112
21	A Kaposi's Sarcoma-Associated Herpesvirus-Encoded Ortholog of MicroRNA miR-155 Induces Human Splenic B-Cell Expansion in NOD/LtSz-scid IL2Rγ ^{null} Mice. Journal of Virology, 2011, 85, 9877-9886.	3.4	108
22	Role of virus-encoded microRNAs in herpesvirus biology. Trends in Microbiology, 2009, 17, 544-553.	7.7	105
23	Upregulation of xCT by KSHV-Encoded microRNAs Facilitates KSHV Dissemination and Persistence in an Environment of Oxidative Stress. PLoS Pathogens, 2010, 6, e1000742.	4.7	98
24	Conservation of Virally Encoded MicroRNAs in Kaposi Sarcoma–Associated Herpesvirus in Primary Effusion Lymphoma Cell Lines and in Patients with Kaposi Sarcoma or Multicentric Castleman Disease. Journal of Infectious Diseases, 2007, 195, 645-659.	4.0	95
25	Peripheral myelin protein 22 is regulated postâ€transcriptionally by miRNAâ€29a. Glia, 2009, 57, 1265-1279.	4.9	90
26	Characterization of the Minimal Replicator of Kaposi's Sarcoma-Associated Herpesvirus Latent Origin. Journal of Virology, 2005, 79, 2637-2642.	3.4	71
27	γ-Herpesvirus-encoded miRNAs and their roles in viral biology and pathogenesis. Current Opinion in Virology, 2013, 3, 266-275.	5.4	71
28	Virus-Encoded MicroRNAs Facilitate Gammaherpesvirus Latency and Pathogenesis <i>In Vivo</i> . MBio, 2014, 5, e00981-14.	4.1	68
29	LANA Binds to Multiple Active Viral and Cellular Promoters and Associates with the H3K4Methyltransferase hSET1 Complex. PLoS Pathogens, 2014, 10, e1004240.	4.7	68
30	A KSHV microRNA Directly Targets G Protein-Coupled Receptor Kinase 2 to Promote the Migration and Invasion of Endothelial Cells by Inducing CXCR2 and Activating AKT Signaling. PLoS Pathogens, 2015, 11, e1005171.	4.7	68
31	Viral miRNAs: tools for immune evasion. Current Opinion in Microbiology, 2010, 13, 540-545.	5.1	65
32	Viral miRNAs. Methods in Molecular Biology, 2011, 721, 43-66.	0.9	63
33	High-Throughput RNA Sequencing-Based Virome Analysis of 50 Lymphoma Cell Lines from the Cancer Cell Line Encyclopedia Project. Journal of Virology, 2015, 89, 713-729.	3.4	61
34	Regulation and Autoregulation of the Promoter for the Latency-associated Nuclear Antigen of Kaposi's Sarcoma-associated Herpesvirus. Journal of Biological Chemistry, 2004, 279, 16822-16831.	3.4	60
35	Comparative Analysis of Gammaherpesvirus Circular RNA Repertoires: Conserved and Unique Viral Circular RNAs. Journal of Virology, 2019, 93, .	3.4	58
36	LEVERAGING BIOLOGICAL REPLICATES TO IMPROVE ANALYSIS IN CHIP-SEQ EXPERIMENTS. Computational and Structural Biotechnology Journal, 2014, 9, e201401002.	4.1	57

#	Article	IF	CITATIONS
37	The SH3BGR/STAT3 Pathway Regulates Cell Migration and Angiogenesis Induced by a Gammaherpesvirus MicroRNA. PLoS Pathogens, 2016, 12, e1005605.	4.7	43
38	A unifying gene signature for adenoid cystic cancer identifies parallel MYB-dependent and MYB-independent therapeutic targets. Oncotarget, 2014, 5, 12528-12542.	1.8	43
39	KSHV miRNAs Decrease Expression of Lytic Genes in Latently Infected PEL and Endothelial Cells by Targeting Host Transcription Factors. Viruses, 2014, 6, 4005-4023.	3.3	40
40	Kaposi's Sarcoma-Associated Herpesvirus (KSHV) Induces the Oncogenic miR-17-92 Cluster and Down-Regulates TGF-β Signaling. PLoS Pathogens, 2015, 11, e1005255.	4.7	40
41	Human Mesenchymal Stem Cells of Diverse Origins Support Persistent Infection with Kaposi's Sarcoma-Associated Herpesvirus and Manifest Distinct Angiogenic, Invasive, and Transforming Phenotypes. MBio, 2016, 7, e02109-15.	4.1	38
42	Modified Cross-Linking, Ligation, and Sequencing of Hybrids (qCLASH) Identifies Kaposi's Sarcoma-Associated Herpesvirus MicroRNA Targets in Endothelial Cells. Journal of Virology, 2018, 92, .	3.4	38
43	A KSHV microRNA enhances viral latency and induces angiogenesis by targeting GRK2 to activate the CXCR2/AKT pathway. Oncotarget, 2016, 7, 32286-32305.	1.8	38
44	Persistent human herpesvirusâ€6 infection in patients with an inherited form of the virus. Journal of Medical Virology, 2013, 85, 1940-1946.	5.0	35
45	A Gammaherpesvirus Noncoding RNA Is Essential for Hematogenous Dissemination and Establishment of Peripheral Latency. MSphere, 2016, 1, .	2.9	33
46	A Toolbox for Herpesvirus miRNA Research: Construction of a Complete Set of KSHV miRNA Deletion Mutants. Viruses, 2016, 8, 54.	3.3	32
47	Biological Characterization and Next-Generation Genome Sequencing of the Unclassified Cotia Virus SPAn232 (Poxviridae). Journal of Virology, 2012, 86, 5039-5054.	3.4	30
48	Epigenetic diversity of Kaposi's sarcoma–associated herpesvirus. Nucleic Acids Research, 2013, 41, 2993-3009.	14.5	29
49	Identification of the Physiological Gene Targets of the Essential Lytic Replicative Kaposi's Sarcoma-Associated Herpesvirus ORF57 Protein. Journal of Virology, 2015, 89, 1688-1702.	3.4	29
50	Analysis of Viral <i>cis</i> Elements Conferring Kaposi's Sarcoma-Associated Herpesvirus Episome Partitioning and Maintenance. Journal of Virology, 2007, 81, 9825-9837.	3.4	28
51	microRNA dependent and independent deregulation of long non-coding RNAs by an oncogenic herpesvirus. PLoS Pathogens, 2017, 13, e1006508.	4.7	28
52	Involvement of SSRP1 in Latent Replication of Kaposi's Sarcoma-Associated Herpesvirus. Journal of Virology, 2009, 83, 11051-11063.	3.4	26
53	Computational analysis of ribonomics datasets identifies long non-coding RNA targets of γ-herpesviral miRNAs. Nucleic Acids Research, 2018, 46, 8574-8589.	14.5	25
54	Identification of murine gammaherpesvirus 68 miRNA-mRNA hybrids reveals miRNA target conservation among gammaherpesviruses including host translation and protein modification machinery. PLoS Pathogens, 2019, 15, e1007843.	4.7	25

#	Article	IF	CITATIONS
55	Gammaherpesvirus RNAs Come Full Circle. MBio, 2019, 10, .	4.1	23
56	PDGFRA defines the mesenchymal stem cell Kaposi's sarcoma progenitors by enabling KSHV oncogenesis in an angiogenic environment. PLoS Pathogens, 2019, 15, e1008221.	4.7	23
57	HITS-CLIP and PAR-CLIP Advance Viral MiRNA Targetome Analysis. Critical Reviews in Eukaryotic Gene Expression, 2014, 24, 101-116.	0.9	23
58	Kaposi's Sarcoma-Associated Herpesvirus MicroRNA Single-Nucleotide Polymorphisms Identified in Clinical Samples Can Affect MicroRNA Processing, Level of Expression, and Silencing Activity. Journal of Virology, 2013, 87, 12237-12248.	3.4	22
59	EBV miRNAs are potent effectors of tumor cell transcriptome remodeling in promoting immune escape. PLoS Pathogens, 2021, 17, e1009217.	4.7	19
60	Human herpesvirus 8 glycoprotein K8.1: expression, post-translational modification and localization analyzed by monoclonal antibody. Journal of Clinical Virology, 2000, 17, 127-136.	3.1	17
61	Therapeutic Challenges of AIDS-Related Non-Hodgkin's Lymphoma in the United States and East Africa. Journal of the National Cancer Institute, 2002, 94, 718-732.	6.3	17
62	Genomic and proteomic analysis of transcription factor TFII-I reveals insight into the response to cellular stress. Nucleic Acids Research, 2014, 42, 7625-7641.	14.5	17
63	Suppression of Transforming Growth Factor Î ² Receptor 2 and Smad5 Is Associated with High Levels of MicroRNA miR-155 in the Oral Mucosa during Chronic Simian Immunodeficiency Virus Infection. Journal of Virology, 2015, 89, 2972-2978.	3.4	16
64	Downregulation of the human peripheral myelin protein 22 gene by miR-29a in cellular models of Charcot–Marie–Tooth disease. Gene Therapy, 2019, 26, 455-464.	4.5	15
65	Cross-Linking Ligation and Sequencing of Hybrids (qCLASH) Reveals an Unpredicted miRNA Targetome in Melanoma Cells. Cancers, 2021, 13, 1096.	3.7	14
66	A noncanonical microRNA derived from the snaR-A noncoding RNA targets a metastasis inhibitor. Rna, 2021, 27, 694-709.	3.5	14
67	Role of heme oxygenase-1 in the pathogenesis and tumorigenicity of Kaposi's sarcoma-associated herpesvirus. Oncotarget, 2016, 7, 10459-10471.	1.8	13
68	A systems biology approach identified different regulatory networks targeted by KSHV miR-K12-11 in B cells and endothelial cells. BMC Genomics, 2014, 15, 668.	2.8	12
69	Virus-encoded microRNAs: a new chapter in virus–host cell interactions. Future Virology, 2006, 1, 233-242.	1.8	10
70	Sequencing of Argonaute-bound microRNA/mRNA hybrids reveals regulation of the unfolded protein response by microRNA-320a. PLoS Genetics, 2021, 17, e1009934.	3.5	9
71	Connivance, Complicity, or Collusion? The Role of Noncoding RNAs in Promoting Gammaherpesvirus Tumorigenesis. Trends in Cancer, 2018, 4, 729-740.	7.4	8
72	Kaposi's Sarcoma-Associated Herpesvirus MicroRNA Mutants Modulate Cancer Hallmark Phenotypic Differences in Human Endothelial Cells. Journal of Virology, 2021, 95, .	3.4	5

#	Article	IF	CITATIONS
73	A core laboratory for the generation of quality-controlled g-herpesvirus bacmids: generation of KSHV microRNA mutants. Infectious Agents and Cancer, 2012, 7, .	2.6	4
74	Contemporary Ribonomics Methods for Viral microRNA Target Analysis. Non-coding RNA, 2018, 4, 31.	2.6	4
75	Age-Related Changes in miRNA Expression Influence GSTZ1 and Other Drug Metabolizing Enzymes. Drug Metabolism and Disposition, 2020, 48, 563-569.	3.3	3
76	Modified Crossâ€Linking, Ligation, and Sequencing of Hybrids (qCLASH) to Identify MicroRNA Targets. Current Protocols, 2021, 1, e257.	2.9	3
77	Epigenetic Regulation of Gammaherpesviruses: A Focus on Kaposi's Sarcoma-Associated Herpesvirus (KSHV/HHV-8). Epigenetics and Human Health, 2017, , 15-46.	0.2	2
78	Human Cytomegalovirus Latency and Myelosuppression: A microRNA-Dependent Yin and Yang Regulatory Loop. Cell Host and Microbe, 2020, 27, 8-10.	11.0	1
79	Identification of Cellular Targets for Virally-Encoded miRNAs by Ectopic Expression and Gene Expression Profiling. , 2008, , 205-224.		0
80	Visualization of molecular biology: The LANA tether. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 4816-4818.	7.1	0
81	Organization and Expression of the Kaposi's Sarcoma-Associated Herpesvirus Genome. , 2009, , 469-493.		0
82	Small RNAs and Their Role in Herpesvirus-Mediated Cancers. , 2012, , 793-817.		0