Kenneth C Ehrlich

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11449670/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Epigenomic and Transcriptomic Prioritization of Candidate Obesity-Risk Regulatory GWAS SNPs. International Journal of Molecular Sciences, 2022, 23, 1271.	4.1	5
2	Epigenetics of Mitochondria-Associated Genes in Striated Muscle. Epigenomes, 2022, 6, 1.	1.8	3
3	Epigenetics and expression of key genes associated with cardiac fibrosis: <i>NLRP3, MMP2, MMP9, CCN2/CTGF</i> and <i>AGT</i> . Epigenomics, 2021, 13, 219-234.	2.1	16
4	Epigenetics of Muscle- and Brain-Specific Expression of KLHL Family Genes. International Journal of Molecular Sciences, 2020, 21, 8394.	4.1	14
5	Epigenetics of Skeletal Muscle-Associated Genes in the ASB, LRRC, TMEM, and OSBPL Gene Families. Epigenomes, 2020, 4, 1.	1.8	23
6	Osteoporosis- and obesity-risk interrelationships: an epigenetic analysis of GWAS-derived SNPs at the developmental gene <i>TBX15</i> . Epigenetics, 2020, 15, 728-749.	2.7	11
7	Tissue-specific epigenetics of atherosclerosis-related <i>ANGPT</i> and <i>ANGPTL</i> genes. Epigenomics, 2019, 11, 169-186.	2.1	30
8	Data showing atherosclerosis-associated differentially methylated regions are often at enhancers. Data in Brief, 2019, 23, 103812.	1.0	9
9	Atherosclerosis-associated differentially methylated regions can reflect the disease phenotype and are often at enhancers. Atherosclerosis, 2019, 280, 183-191.	0.8	29
10	Developmentally linked human DNA hypermethylation is associated with down-modulation, repression, and upregulation of transcription. Epigenetics, 2018, 13, 275-289.	2.7	31
11	Association of 5-hydroxymethylation and 5-methylation of DNA cytosine with tissue-specific gene expression. Epigenetics, 2017, 12, 123-138.	2.7	61
12	The Aspergillus flavus fluP-associated metabolite promotes sclerotial production. Fungal Biology, 2016, 120, 1258-1268.	2.5	5
13	DNA Hypomethylation in Intragenic and Intergenic Enhancer Chromatin of Muscle-Specific Genes Usually Correlates with their Expression. Yale Journal of Biology and Medicine, 2016, 89, 441-455.	0.2	22
14	Regulation of the aflatoxin-like toxin dothistromin by AflJ. Fungal Biology, 2015, 119, 503-508.	2.5	4
15	An Aspergillus flavus secondary metabolic gene cluster containing a hybrid PKS–NRPS is necessary for synthesis of the 2-pyridones, leporins. Fungal Genetics and Biology, 2015, 81, 88-97.	2.1	67
16	Aflatoxin Biosynthesis Is a Novel Source of Reactive Oxygen Species—A Potential Redox Signal to Initiate Resistance to Oxidative Stress?. Toxins, 2015, 7, 1411-1430.	3.4	63
17	Use of UHPLC high-resolution Orbitrap mass spectrometry to investigate the genes involved in the production of secondary metabolites inAspergillus flavus. Food Additives and Contaminants - Part A Chemistry, Analysis, Control, Exposure and Risk Assessment, 2015, 32, 1656-1673.	2.3	18
18	Comparison of Expression of Secondary Metabolite Biosynthesis Cluster Genes in Aspergillus flavus, A. parasiticus, and A. oryzae. Toxins, 2014, 6, 1916-1928.	3.4	45

#	Article	IF	CITATIONS
19	DNA cytosine methylation and hydroxymethylation at the borders. Epigenomics, 2014, 6, 563-566.	2.1	38
20	Functional characterization of a veA-dependent polyketide synthase gene in Aspergillus flavus necessary for the synthesis of asparasone, a sclerotium-specific pigment. Fungal Genetics and Biology, 2014, 64, 25-35.	2.1	67
21	Identification of novel metabolites from <i>Aspergillus flavus</i> by high resolution and multiple stage mass spectrometry. Food Additives and Contaminants - Part A Chemistry, Analysis, Control, Exposure and Risk Assessment, 2014, 31, 111-120.	2.3	24
22	Transcriptomic profiles of Aspergillus flavus CA42, a strain that produces small sclerotia, by decanal treatment and after recovery. Fungal Genetics and Biology, 2014, 68, 39-47.	2.1	20
23	Non-aflatoxigenic Aspergillus flavus to prevent aflatoxin contamination in crops: advantages and limitations. Frontiers in Microbiology, 2014, 5, 50.	3.5	109
24	Dothistromin genes at multiple separate loci are regulated by AflR. Fungal Genetics and Biology, 2013, 51, 12-20.	2.1	30
25	Aspergillus flavus VelB acts distinctly from VeA in conidiation and may coordinate with FluG to modulate sclerotial production. Fungal Genetics and Biology, 2013, 58-59, 71-79.	2.1	72
26	Genome-wide analysis of the Zn(II)2Cys6 zinc cluster-encoding gene family in Aspergillus flavus. Applied Microbiology and Biotechnology, 2013, 97, 4289-4300.	3.6	61
27	Fragmentation of an aflatoxinâ€like gene cluster in a forest pathogen. New Phytologist, 2013, 198, 525-535.	7.3	55
28	Association with AflR in Endosomes Reveals New Functions for AflJ in Aflatoxin Biosynthesis. Toxins, 2012, 4, 1582-1600.	3.4	25
29	Deletion of the Aspergillus flavus Orthologue of <i>A. nidulans fluG</i> Reduces Conidiation and Promotes Production of Sclerotia but Does Not Abolish Aflatoxin Biosynthesis. Applied and Environmental Microbiology, 2012, 78, 7557-7563.	3.1	79
30	NsdC and NsdD Affect Aspergillus flavus Morphogenesis and Aflatoxin Production. Eukaryotic Cell, 2012, 11, 1104-1111.	3.4	109
31	Effects of laeA deletion on Aspergillus flavus conidial development and hydrophobicity may contribute to loss of aflatoxin production. Fungal Biology, 2012, 116, 298-307.	2.5	76
32	Functional and phylogenetic analysis of the Aspergillus ochraceoroseus aflQ (ordA) gene ortholog. Mycologia, 2012, 104, 857-864.	1.9	9
33	Identification of genetic defects in the atoxigenic biocontrol strain Aspergillus flavus K49 reveals the presence of a competitive recombinant group in field populations. International Journal of Food Microbiology, 2012, 154, 192-196.	4.7	54
34	Conversion of 11-hydroxy-O-methylsterigmatocystin to aflatoxin G1 in Aspergillus parasiticus. Applied Microbiology and Biotechnology, 2011, 90, 635-650.	3.6	18
35	Expression Profiling of Non-Aflatoxigenic Aspergillus parasiticus Mutants Obtained by 5-Azacytosine Treatment or Serial Mycelial Transfer. Toxins, 2011, 3, 932-948.	3.4	28
36	What does genetic diversity of Aspergillus flavus tell us about Aspergillus oryzae?. International Journal of Food Microbiology, 2010, 138, 189-199.	4.7	75

#	Article	IF	CITATIONS
37	Absence of the aflatoxin biosynthesis gene, norA, allows accumulation of deoxyaflatoxin B1 in Aspergillus flavus cultures. FEMS Microbiology Letters, 2010, 305, 65-70.	1.8	13
38	HypC, the Anthrone Oxidase Involved in Aflatoxin Biosynthesis. Applied and Environmental Microbiology, 2010, 76, 3374-3377.	3.1	47
39	Predicted Roles of the Uncharacterized Clustered Genes in Aflatoxin Biosynthesis. Toxins, 2009, 1, 37-58.	3.4	54
40	Cyclopiazonic Acid Biosynthesis of Aspergillus flavus and Aspergillus oryzae. Toxins, 2009, 1, 74-99.	3.4	105
41	Aflatoxin-like Gene Clusters and How They Evolved. , 2009, , 65-75.		5
42	Acyl arrier Protein–Phosphopantetheinyltransferase Partnerships in Fungal Fatty Acid Synthases. ChemBioChem, 2008, 9, 1559-1563.	2.6	22
43	Synthetic Strategy of Nonreducing Iterative Polyketide Synthases and the Origin of the Classical "Starterâ€Unit Effect― ChemBioChem, 2008, 9, 1019-1023.	2.6	40
44	Starter unit specificity directs genome mining of polyketide synthase pathways in fungi. Bioorganic Chemistry, 2008, 36, 16-22.	4.1	48
45	Use of Pyrosequencing to Quantify Incidence of a Specific <i>Aspergillus flavus</i> Strain Within Complex Fungal Communities Associated with Commercial Cotton Crops. Phytopathology, 2008, 98, 282-288.	2.2	36
46	Are the Genes nadA and norB Involved in Formation of Aflatoxin G1?. International Journal of Molecular Sciences, 2008, 9, 1717-1729.	4.1	28
47	Polyketide Biosynthesis in Fungi. ACS Symposium Series, 2007, , 68-80.	0.5	1
48	Analysis of single nucleotide polymorphisms in three genes shows evidence for genetic isolation of certain Aspergillus flavus vegetative compatibility groups. FEMS Microbiology Letters, 2007, 268, 231-236.	1.8	48
49	Aflatoxin-producing Aspergillus species from Thailand. International Journal of Food Microbiology, 2007, 114, 153-159.	4.7	117
50	Aflatoxigenicity in Aspergillus: molecular genetics, phylogenetic relationships and evolutionary implications. Mycopathologia, 2006, 162, 167-177.	3.1	97
51	Cladal relatedness among Aspergillus oryzae isolates and Aspergillus flavus S and L morphotype isolates. International Journal of Food Microbiology, 2006, 108, 172-177.	4.7	84
52	The Aflatoxin Biosynthesis Cluster Gene, aflX , Encodes an Oxidoreductase Involved in Conversion of Versicolorin A to Demethylsterigmatocystin. Applied and Environmental Microbiology, 2006, 72, 1096-1101.	3.1	63
53	Divergent regulation of aflatoxin production at acidic pH by two Aspergillus strains. Mycopathologia, 2005, 159, 579-581.	3.1	28
54	An Aflatoxin Biosynthesis Cluster Gene Encodes a Novel Oxidase Required for Conversion of Versicolorin A to Sterigmatocystin. Applied and Environmental Microbiology, 2005, 71, 8963-8965.	3.1	42

#	Article	IF	CITATIONS
55	An isolate of Aspergillus flavus used to reduce aflatoxin contamination in cottonseed has a defective polyketide synthase gene. Applied Microbiology and Biotechnology, 2004, 65, 473-478.	3.6	148
56	Clustered Pathway Genes in Aflatoxin Biosynthesis. Applied and Environmental Microbiology, 2004, 70, 1253-1262.	3.1	713
57	Aflatoxin Biosynthesis Cluster Gene cypA Is Required for G Aflatoxin Formation. Applied and Environmental Microbiology, 2004, 70, 6518-6524.	3.1	169
58	Sequence comparison of aflR from different Aspergillus species provides evidence for variability in regulation of aflatoxin production. Fungal Genetics and Biology, 2003, 38, 63-74.	2.1	109
59	Toxins of Filamentous Fungi. , 2002, 81, 167-206.		124
60	Promoter elements in the aflatoxin pathway polyketide synthase gene. Biochimica Et Biophysica Acta Gene Regulatory Mechanisms, 2002, 1576, 171-175.	2.4	24
61	Molecular and functional characterization of a second copy of the aflatoxin regulatory gene, aflR-2, from Aspergillus parasiticus. Biochimica Et Biophysica Acta Gene Regulatory Mechanisms, 2002, 1576, 316-323.	2.4	25
62	Aflatoxin biosynthesis. Revista Iberoamericana De Micologia, 2002, 19, 191-200.	0.9	60
63	DNA fromAspergillus flavuscontains 5-methylcytosine. FEMS Microbiology Letters, 2001, 205, 151-155.	1.8	30
64	Promoter elements involved in the expression of the Aspergillus parasiticus aflatoxin biosynthesis pathway gene avnA. Biochimica Et Biophysica Acta Gene Regulatory Mechanisms, 2000, 1491, 7-12.	2.4	16
65	adhA in Aspergillus parasiticus Is Involved in Conversion of 5′-Hydroxyaverantin to Averufin. Applied and Environmental Microbiology, 2000, 66, 4715-4719.	3.1	40
66	Induction of the Soybean Phytoalexins Coumestrol and Glyceollin byAspergillus. Journal of Agricultural and Food Chemistry, 2000, 48, 2167-2172.	5.2	88
67	Characterization of the promoter for the gene encoding the aflatoxin biosynthetic pathway regulatory protein AFLR. Biochimica Et Biophysica Acta Gene Regulatory Mechanisms, 1999, 1444, 412-417.	2.4	61
68	Alteration of Different Domains in AFLR Affects Aflatoxin Pathway Metabolism inAspergillus parasiticusTransformants. Fungal Genetics and Biology, 1998, 23, 279-287.	2.1	50
69	Characterization of the Critical Amino Acids of an <i>Aspergillus parasiticus</i> Cytochrome P-450 Monooxygenase Encoded by <i>ordA</i> That Is Involved in the Biosynthesis of Aflatoxins B ₁ , G ₁ , B ₂ , and G ₂ . Applied and Environmental Microbiology, 1998, 64, 4834-4841.	3.1	91
70	Characterization of the Aspergillus parasiticus niaD and niiA gene cluster. Current Genetics, 1996, 30, 68-75.	1.7	54
71	Characterization of DBPm, a plant protein that binds to DNA containing 5-methylcytosine. Biochimica Et Biophysica Acta Gene Regulatory Mechanisms, 1993, 1172, 108-116.	2.4	22

Effect of DNA methylation on the binding of vertebrate and plant proteins to DNA. , 1993, 64, 145-168.

38

#	Article	IF	CITATIONS
73	A broad bean cDNA clone encoding a DNA-binding protein resembling mammalian CREB in its sequence specificity and DNA methylation sensitivity. Gene, 1992, 117, 169-178.	2.2	29
74	Three MDBP sites in the immediate-early enhancer-promoter region of human cytomegalovirus. Virology, 1991, 182, 865-869.	2.4	35
75	CpG methylation inhibits binding of several sequence-specific DNA-binding proteins from pea, wheat, soybean and cauliflower. Plant Molecular Biology, 1991, 17, 111-123.	3.9	118
76	Binding sites in mammalian genes and viral gene regulatory regions recognized by methylated DNA-binding protein. Nucleic Acids Research, 1990, 18, 6253-6260.	14.5	60
77	How different DNA sequences are recognized by a DNA-binding protein: effects of partial proteolysis. Nucleic Acids Research, 1989, 17, 8611-8629.	14.5	19
78	Related sites in human and herpesvirus DNA recognized by methylated DNA-binding protein from human placenta. Nucleic Acids Research, 1989, 17, 1459-1474.	14.5	37
79	Preparation of theFusarium toxin, nivalenol, by oxidation of the putative biosynthetic precursor, 7-deoxynivalenol. Mycopathologia, 1989, 107, 111-114.	3.1	3
80	Methylated DNA-binding protein is present in various mammalian cell types. Nucleic Acids Research, 1988, 16, 8029-8044.	14.5	43
81	Protein synthesis inhibition by 8-oxo-12,13-epoxytrichothecenes. Biochimica Et Biophysica Acta - General Subjects, 1987, 923, 206-213.	2.4	110
82	Effect of site-specific DNA methylation and mutagenesis on recognition by methylated DNA-binding protein from human placenta. Nucleic Acids Research, 1986, 14, 8387-8397.	14.5	42
83	Mycotoxins in Grain Dust: Method for Analysis of Aflatoxins, Ochratoxin A, Zearalenone,Vomitoxin, and Secalonic Acid D. Journal of the Association of Official Analytical Chemists, 1984, 67, 963-967.	0.2	5
84	Digestion of highly modified bacteriophage DNA by restriction endonucleases. Nucleic Acids Research, 1982, 10, 1579-1591.	14.5	125