Bernhard U Seeber

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11448791/publications.pdf

Version: 2024-02-01

623734 610901 27 740 14 24 citations g-index h-index papers 29 29 29 432 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Localization cues with bilateral cochlear implants. Journal of the Acoustical Society of America, 2008, 123, 1030-1042.	1.1	134
2	Localization ability with bimodal hearing aids and bilateral cochlear implants. Journal of the Acoustical Society of America, 2004, 116 , $1698-1709$.	1.1	130
3	Sound Localization in Noise by Normal-Hearing Listeners and Cochlear Implant Users. Ear and Hearing, 2012, 33, 445-457.	2.1	95
4	A system to simulate and reproduce audio–visual environments for spatial hearing research. Hearing Research, 2010, 260, 1-10.	2.0	48
5	Dynamic-range compression affects the lateral position of sounds. Journal of the Acoustical Society of America, 2011, 130, 3939-3953.	1.1	39
6	Linking dynamic-range compression across the ears can improve speech intelligibility in spatially separated noise. Journal of the Acoustical Society of America, 2013, 133, 1004-1016.	1.1	33
7	Localization in Reverberation with Cochlear Implants. JARO - Journal of the Association for Research in Otolaryngology, 2013, 14, 379-392.	1.8	33
8	Effects of Dynamic-Range Compression on the Spatial Attributes of Sounds in Normal-Hearing Listeners. Ear and Hearing, 2012, 33, 399-410.	2.1	32
9	Comparison of the benefits of cochlear implantation versus contra-lateral routing of signal hearing aids in adult patients with single-sided deafness: study protocol for a prospective within-subject longitudinal trial. BMC Ear, Nose and Throat Disorders, 2014, 14, 7.	2.6	28
10	Apparent auditory source width insensitivity in older hearing-impaired individuals. Journal of the Acoustical Society of America, 2012, 132, 369-379.	1.1	27
11	The perception of apparent auditory source width in hearing-impaired adults. Journal of the Acoustical Society of America, 2014, 135, 3548-3559.	1.1	24
12	Failure of the precedence effect with a noise-band vocoder. Journal of the Acoustical Society of America, 2011, 129, 1509-1521.	1.1	20
13	A method to enhance the use of interaural time differences for cochlear implants in reverberant environments. Journal of the Acoustical Society of America, 2016, 140, 1116-1129.	1.1	19
14	Factors affecting the use of envelope interaural time differences in reverberation. Journal of the Acoustical Society of America, 2013, 133, 2288-2300.	1.1	17
15	A Phenomenological Model of the Electrically Stimulated Auditory Nerve Fiber: Temporal and Biphasic Response Properties. Frontiers in Computational Neuroscience, 2016, 10, 8.	2.1	12
16	Phenomenological modelling of electrically stimulated auditory nerve fibers: A review. Network: Computation in Neural Systems, 2016, 27, 157-185.	3.6	11
17	The history and future of neural modeling for cochlear implants. Network: Computation in Neural Systems, 2016, 27, 53-66.	3 . 6	8
18	Comodulation Masking Release In Electric Hearing. JARO - Journal of the Association for Research in Otolaryngology, 2014, 15, 279-291.	1.8	7

#	Article	IF	CITATIONS
19	Indications for temporal fine structure contribution to co-modulation masking release. Journal of the Acoustical Society of America, 2010, 128, 3614-3624.	1.1	6
20	Auditory Room Learning and Adaptation to Sound Reflections. Modern Acoustics and Signal Processing, 2020, , 203-222.	0.8	4
21	Measuring the Apparent Width of Auditory Sources in Normal and Impaired Hearing. Advances in Experimental Medicine and Biology, 2013, 787, 303-310.	1.6	3
22	Communication Conditions in Virtual Acoustic Scenes in an Underground Station., 2021,,.		2
23	Effect of Acoustic Scene Complexity and Visual Scene Representation on Auditory Perception in Virtual Audio-Visual Environments., 2021,,.		2
24	Compatibility of a Magnetic Position Tracker with a Cochlear Implant System. Ear and Hearing, 2009, 30, 380-383.	2.1	1
25	Auralization of acoustic design in primary school classrooms. , 2021, , .		1
26	What can we learn from simulated acoustic environments?. Proceedings of Meetings on Acoustics, 2013, , .	0.3	0
27	Perceptual equalization of artifacts of sound reproduction via multiple loudspeakers. Proceedings of Meetings on Acoustics, 2013 , , .	0.3	0