Jia Tian

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1144854/publications.pdf

Version: 2024-02-01

218677 289244 1,689 48 26 40 citations h-index g-index papers 50 50 50 2314 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	A carboxylatopillar[5]arene-based pH-triggering supramolecular photosensitizer for enhanced photodynamic antibacterial efficacy. Chemical Communications, 2022, , .	4.1	5
2	A multifunctional platform with metallacycle-based star polymers and gold nanorods for combinational photochemotherapy. Materials Today Advances, 2022, 14, 100229.	5.2	3
3	Pillar[5]areneâ€Based Acidâ€Triggered Supramolecular Porphyrin Photosensitizer for Combating Bacterial Infections and Biofilm Dispersion. Advanced Healthcare Materials, 2022, 11, e2102015.	7.6	26
4	A hierarchical supramolecular nanozyme platform for programming tumor-specific PDT and catalytic therapy. Chemical Engineering Journal, 2022, 444, 136164.	12.7	9
5	A Single-wavelength NIR-triggered Polymer for in Situ Generation of Peroxynitrite (ONOOâ^') to Enhance Phototherapeutic Efficacy. Chinese Journal of Polymer Science (English Edition), 2021, 39, 692-701.	3.8	10
6	An Antifouling and Antimicrobial Zwitterionic Nanocomposite Hydrogel Dressing for Enhanced Wound Healing. ACS Biomaterials Science and Engineering, 2021, 7, 1621-1630.	5.2	42
7	Zeolitic Imidazolate Framework Platform for Combinational Starvation Therapy and Oxygen Self-Sufficient Photodynamic Therapy against a Hypoxia Tumor. ACS Applied Bio Materials, 2021, 4, 4413-4421.	4.6	17
8	Mitochondria-targeting and ROS-sensitive smart nanoscale supramolecular organic framework for combinational amplified photodynamic therapy and chemotherapy. Acta Biomaterialia, 2021, 130, 447-459.	8.3	32
9	Janus macromolecular brushes for synergistic cascade-amplified photodynamic therapy and enhanced chemotherapy. Acta Biomaterialia, 2020, 101, 495-506.	8.3	42
10	Enhanced photodynamic therapy based on an amphiphilic branched copolymer with pendant vinyl groups for simultaneous GSH depletion and Ce6 release. Journal of Materials Chemistry B, 2020, 8, 478-483.	5.8	25
11	Enhanced photodynamic therapy through supramolecular photosensitizers with an adamantyl-functionalized porphyrin and a cyclodextrin dimer. Chemical Communications, 2020, 56, 11134-11137.	4.1	17
12	Inhibiting Radiative Transition-Mediated Multifunctional Polymeric Nanoplatforms for Highly Efficient Tumor Phototherapeutics. ACS Applied Materials & Samp; Interfaces, 2020, 12, 44523-44533.	8.0	15
13	Pillar[5]arene-Based Switched Supramolecular Photosensitizer for Self-Amplified and pH-Activated Photodynamic Therapy. ACS Applied Materials & Samp; Interfaces, 2020, 12, 41038-41046.	8.0	35
14	Water-soluble hyperbranched polyglycerol photosensitizer for enhanced photodynamic therapy. Polymer Chemistry, 2020, 11, 3913-3921.	3.9	3
15	Recent advances of multi-dimensional porphyrin-based functional materials in photodynamic therapy. Coordination Chemistry Reviews, 2020, 420, 213410.	18.8	191
16	Linear Alternating Supramolecular Photosensitizer for Enhanced Photodynamic Therapy. ACS Applied Materials & Samp; Interfaces, 2020, 12, 32352-32359.	8.0	33
17	A super-stretchable, self-healing and injectable supramolecular hydrogel constructed by a host–guest crosslinker. Biomaterials Science, 2020, 8, 3359-3369.	5.4	32
18	NIR-Triggered Multifunctional and Degradable Nanoplatform Based on an ROS-Sensitive Block Copolymer for Imaging-Guided Chemo-Phototherapy. Biomacromolecules, 2019, 20, 4218-4229.	5.4	33

#	Article	IF	CITATIONS
19	NIR-Activated "OFF/ON―Photodynamic Therapy by a Hybrid Nanoplatform with Upper Critical Solution Temperature Block Copolymers and Gold Nanorods. Biomacromolecules, 2019, 20, 3873-3883.	5.4	37
20	A Redox Stimulation-Activated Amphiphile for Enhanced Photodynamic Therapy. Biomacromolecules, 2019, 20, 2796-2808.	5.4	25
21	<i>In situ</i> bone regeneration enabled by a biodegradable hybrid double-network hydrogel. Biomaterials Science, 2019, 7, 3266-3276.	5.4	85
22	Far-Red Light-Induced Reversible Addition–Fragmentation Chain Transfer Polymerization Using a Man-Made Bacteriochlorin. ACS Macro Letters, 2019, 8, 616-622.	4.8	48
23	Synthesis, self-assembly and applications of functional polymers based on porphyrins. Progress in Polymer Science, 2019, 95, 65-117.	24.7	117
24	An oxygen self-sufficient NIR-responsive nanosystem for enhanced PDT and chemotherapy against hypoxic tumors. Chemical Science, 2019, 10, 5766-5772.	7.4	91
25	NIR-Activated Polymeric Nanoplatform with Upper Critical Solution Temperature for Image-Guided Synergistic Photothermal Therapy and Chemotherapy. Biomacromolecules, 2019, 20, 2338-2349.	5.4	42
26	Combating Multidrug Resistance through an NIR-Triggered Cyanine-Containing Amphiphilic Block Copolymer. ACS Applied Bio Materials, 2019, 2, 1862-1874.	4.6	6
27	Intelligent CO ₂ - and photo-dual-responsive polymer vesicles with tunable wall thickness. Polymer Chemistry, 2019, 10, 1610-1618.	3.9	9
28	Ultrasensitive redox-responsive porphyrin-based polymeric nanoparticles for enhanced photodynamic therapy. European Polymer Journal, 2019, 110, 344-354.	5.4	16
29	Precise Self-Assembly and Controlled Catalysis of Thermoresponsive Core–Satellite Multicomponent Hybrid Nanoparticles. Langmuir, 2019, 35, 266-275.	3.5	24
30	Anisotropic surface chemistry properties and adsorption behavior of silicate mineral crystals. Advances in Colloid and Interface Science, 2018, 256, 340-351.	14.7	50
31	A Comparative Study of Selfâ€Assembled Superstructures from Cellulose Stearoyl Ester and Poly(Vinyl) Tj ETQq1 I	l 0.78431 2.2	4 ₅ rgBT /Ove
32	Silicaâ€Coated Magnetite Nanoparticles Carrying a Highâ€Density Polymer Brush Shell of Hydrophilic Polymer. Macromolecular Rapid Communications, 2018, 39, e1800226.	3.9	15
33	Enhancing the efficacy of photodynamic therapy (PDT) <i>via</i> water-soluble pillar[5]arene-based supramolecular complexes. Chemical Communications, 2018, 54, 7629-7632.	4.1	40
34	New insights into the oleate flotation response of feldspar particles of different sizes: Anisotropic adsorption model. Journal of Colloid and Interface Science, 2017, 505, 500-508.	9.4	32
35	Enhancing Photochemical Internalization of DOX through a Porphyrin-based Amphiphilic Block Copolymer. Biomacromolecules, 2017, 18, 3992-4001.	5.4	43
36	The flotation and adsorption of mixed collectors on oxide and silicate minerals. Advances in Colloid and Interface Science, 2017, 250, 1-14.	14.7	74

#	Article	IF	CITATIONS
37	Polystyreneâ€Core–Silicaâ€Shell Hybrid Particles Containing Gold and Magnetic Nanoparticles. Chemistry - an Asian Journal, 2016, 11, 596-603.	3.3	1
38	Polymeric Flaky Nanostructures from Cellulose Stearoyl Esters for Functional Surfaces. Advanced Materials Interfaces, 2016, 3, 1600636.	3.7	6
39	PRMT1 Upregulated by Epithelial Proinflammatory Cytokines Participates in COX2 Expression in Fibroblasts and Chronic Antigen-Induced Pulmonary Inflammation. Journal of Immunology, 2015, 195, 298-306.	0.8	60
40	Pdcd4 modulates markers of macrophage alternative activation and airway remodeling in antigen-induced pulmonary inflammation. Journal of Leukocyte Biology, 2014, 96, 1065-1075.	3.3	36
41	Amphiphilic gold nanoparticles formed at a liquid–liquid interface and fabrication of hybrid nanocapsules based on interfacial UV photodimerization. Polymer Chemistry, 2013, 4, 1913.	3.9	30
42	Interface-Directed Self-Assembly of Gold Nanoparticles and Fabrication of Hybrid Hollow Capsules by Interfacial Cross-Linking Polymerization. Langmuir, 2012, 28, 9365-9371.	3.5	33
43	Nanoparticles with Fe ₃ O ₄ â^'Nanoparticle Cores and Gold-Nanoparticle Coronae Prepared by Self-Assembly Approach. Journal of Physical Chemistry C, 2011, 115, 3304-3312.	3.1	42
44	Self-assembly of polystyrene with pendant hydrophilic gold nanoparticles: the influence of the hydrophilicity of the hybrid polymers. Journal of Materials Chemistry, 2011, 21, 16928.	6.7	15
45	Reactive triblock copolymer micelles induced by click reaction: A platform for RAFT polymerization. Soft Matter, 2011, 7, 11194.	2.7	9
46	Self-Assembly of Gold Nanoparticles and Polystyrene: A Highly Versatile Approach to the Preparation of Colloidal Particles with Polystyrene Cores and Gold Nanoparticle Coronae. Langmuir, 2010, 26, 8762-8768.	3.5	47
47	Synthesis of PLLAâ€PEOMA combâ€∢i>blockàê€comb type molecular brushes based on AGET ATRP and ringâ€opening polymerization. Polymer International, 2009, 58, 1335-1340.	3.1	18
48	Mixed Molecular Brushes with PLLA and PS Side Chains Prepared by AGET ATRP and Ring-Opening Polymerization. Macromolecules, 2006, 39, 7513-7519.	4.8	60