Kenneth L Rosenthal

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11448381/publications.pdf

Version: 2024-02-01

55 3,095 32 51 papers citations h-index g-index

55 55 55 55 2821

times ranked

citing authors

docs citations

all docs

#	Article	IF	CITATIONS
1	Intranasal Immunization with CpG Oligodeoxynucleotides as an Adjuvant Dramatically Increases IgA and Protection Against Herpes Simplex Virus-2 in the Genital Tract. Journal of Immunology, 2001, 166, 3451-3457.	0.8	217
2	Progesterone Increases Susceptibility and Decreases Immune Responses to Genital Herpes Infection. Journal of Virology, 2003, 77, 4558-4565.	3.4	210
3	Interleukin-15 and Natural Killer and NKT Cells Play a Critical Role in Innate Protection against Genital Herpes Simplex Virus Type 2 Infection. Journal of Virology, 2003, 77, 10168-10171.	3.4	194
4	Specific secretory immune responses in the female genital tract following intranasal immunization with a recombinant adenovirus expressing glycoprotein B of herpes simplex virus. Vaccine, 1995, 13, 1589-1595.	3.8	150
5	Local Delivery of CpG Oligodeoxynucleotides Induces Rapid Changes in the Genital Mucosa and Inhibits Replication, but Not Entry, of Herpes Simplex Virus Type 2. Journal of Virology, 2003, 77, 8948-8956.	3.4	143
6	Toll-like Receptor 9, CpG DNA and Innate Immunity. Current Molecular Medicine, 2002, 2, 545-556.	1.3	141
7	Toll-like receptor expression and responsiveness are increased in viraemic HIV-1 infection. Aids, 2008, 22, 685-694.	2.2	135
8	Tollâ€Like Receptor (TLR)–3, but Not TLR4, Agonist Protects against Genital Herpes Infection in the Absence of Inflammation Seen with CpG DNA. Journal of Infectious Diseases, 2004, 190, 1841-1849.	4.0	131
9	Prolonged Exposure to Progesterone Prevents Induction of Protective Mucosal Responses following Intravaginal Immunization with Attenuated Herpes Simplex Virus Type 2. Journal of Virology, 2003, 77, 9845-9851.	3.4	114
10	Effects of the Estrous Cycle on Local Humoral Immune Responses and Protection of Intranasally Immunized Female Mice against Herpes Simplex Virus Type 2 Infection in the Genital Tract. Virology, 1996, 224, 487-497.	2.4	107
11	HIV-1-specific cellular immune responses among HIV-1-resistant sex workers. Immunology and Cell Biology, 2000, 78, 586-595.	2.3	91
12	Estradiol Regulates Susceptibility following Primary Exposure to Genital Herpes Simplex Virus Type 2, while Progesterone Induces Inflammation. Journal of Virology, 2005, 79, 3107-3116.	3.4	80
13	Suppression of Activation of the Human Immunodeficiency Virus Long Terminal Repeat by CD8+T Cells Is Not Lentivirus Specific. AIDS Research and Human Retroviruses, 1995, 11, 1321-1326.	1.1	76
14	Protection against Genital Herpes Infection in Mice Immunized under Different Hormonal Conditions Correlates with Induction of Vagina-Associated Lymphoid Tissue. Journal of Virology, 2005, 79, 3117-3126.	3.4	74
15	Intravaginal immunization with viral subunit protein plus CpG oligodeoxynucleotides induces protective immunity against HSV-2. Vaccine, 2004, 22, 3098-3104.	3.8	66
16	TLR10 Senses HIV-1 Proteins and Significantly Enhances HIV-1 Infection. Frontiers in Immunology, 2019, 10, 482.	4.8	64
17	Mucosal Immunization with Inactivated Human Immunodeficiency Virus plus CpG Oligodeoxynucleotides Induces Genital Immune Responses and Protection against Intravaginal Challenge. Journal of Infectious Diseases, 2002, 186, 1098-1105.	4.0	58
18	Susceptibility of Human Female Primary Genital Epithelial Cells to Herpes Simplex Virus, Type-2 and the Effect of TLR3 Ligand and Sex Hormones on Infection1. Biology of Reproduction, 2007, 77, 1049-1059.	2.7	56

#	Article	IF	CITATIONS
19	HIV-1 RNA Dysregulates the Natural TLR Response to Subclinical Endotoxemia in Kenyan Female Sex-Workers. PLoS ONE, 2009, 4, e5644.	2.5	56
20	Mucosal Innate and Adaptive Immune Responses against Herpes Simplex Virus Type 2 in a Humanized Mouse Model. Journal of Virology, 2009, 83, 10664-10676.	3.4	56
21	Challenges for vaccination against sexually-transmitted diseases: induction and long-term maintenance of mucosal immune responses in the female genital tract. Seminars in Immunology, 1997, 9, 303-314.	5.6	55
22	Differential induction of innate anti-viral responses by TLR ligands against Herpes simplex virus, type 2, infection in primary genital epithelium of women. Antiviral Research, 2009, 81, 103-112.	4.1	50
23	IL-15 and Type I Interferon Are Required for Activation of Tumoricidal NK Cells by Virus-Infected Dendritic Cells. Cancer Research, 2011, 71, 2497-2506.	0.9	49
24	NK and NKT Cell-Independent Contribution of Interleukin-15 to Innate Protection against Mucosal Viral Infection. Journal of Virology, 2005, 79, 4470-4478.	3.4	48
25	CD8+ T-Cell-Mediated Cross-Clade Protection in the Genital Tract following Intranasal Immunization with Inactivated Human Immunodeficiency Virus Antigen Plus CpG Oligodeoxynucleotides. Journal of Virology, 2005, 79, 393-400.	3.4	46
26	Intravaginal infection with herpes simplex virus type-2 (HSV-2) generates a functional effector memory T cell population that persists in the murine genital tract. Journal of Reproductive Immunology, 2010, 87, 39-44.	1.9	46
27	RANTES Production by T Cells and CD8â€Mediated Inhibition of Human Immunodeficiency Virus Gene Expression before Initiation of Potent Antiretroviral Therapy Predict Sustained Suppression of Viral Replication. Journal of Infectious Diseases, 2000, 181, 505-512.	4.0	40
28	Parameters of CpG oligodeoxynucleotide-induced protection against intravaginal HSV-2 challenge. Journal of Medical Virology, 2003, 71, 561-568.	5.0	40
29	Breastfeeding Behaviors and the Innate Immune System of Human Milk: Working Together to Protect Infants against Inflammation, HIV-1, and Other Infections. Frontiers in Immunology, 2017, 8, 1631.	4.8	38
30	The influence of lymphocyte counts and disease progression on circulating and inducible anti-HIV-1 cytotoxic T-cell activity in HIV-1-infected subjects. Aids, 1992, 6, 1085-1094.	2.2	37
31	Milk Matters: Soluble Toll-Like Receptor 2 (sTLR2) in Breast Milk Significantly Inhibits HIV-1 Infection and Inflammation. PLoS ONE, 2012, 7, e40138.	2.5	34
32	Suppression of the Human Immunodeficiency Virus Long Terminal Repeat by CD8+T Cells Is Dependent on the NFAT-1 Element. AIDS Research and Human Retroviruses, 1996, 12, 143-148.	1.1	33
33	Treatment of intravaginal HSV-2 infection in mice: A comparison of CpG oligodeoxynucleotides and resiquimod (R-848). Antiviral Research, 2006, 69, 77-85.	4.1	33
34	War and peace between WAP and HIV: role of SLPI, trappin-2, elafin and ps20 in susceptibility to HIV infection. Biochemical Society Transactions, 2011, 39, 1427-1432.	3.4	33
35	CD8+ T-cell-mediated suppression of HIV-1 long terminal repeat-driven gene expression is not modulated by the CC chemokines RANTES, macrophage inflammatory protein (MIP)- $1\hat{l}_{\pm}$ and MIP- $1\hat{l}_{\pm}^{2}$. Aids, 1997, 11, 575-580.	2.2	32
36	Antiviral Activity of Trappin-2 and Elafin <i>In Vitro</i> and <i>In Vivo</i> against Genital Herpes. Journal of Virology, 2013, 87, 7526-7538.	3.4	28

#	Article	IF	CITATIONS
37	Multiple tandem copies of conserved gp41 epitopes incorporated in gag virus-like particles elicit systemic and mucosal antibodies in an optimized heterologous vector delivery regimen. Vaccine, 2010, 28, 7070-7080.	3.8	26
38	Anti-HIV-1 Activity of Elafin Is More Potent than Its Precursor's, Trappin-2, in Genital Epithelial Cells. Journal of Virology, 2012, 86, 4599-4610.	3.4	23
39	CD8 ⁺ T Cell Supernatants of HIV Type 1-Infected Individuals Have Opposite Effects on Long Terminal Repeat-Mediated Transcription in T Cells and Monocytes. AIDS Research and Human Retroviruses, 1997, 13, 71-77.	1.1	22
40	Mucosal delivery of CpG oligodeoxynucleotides expands functional dendritic cells and macrophages in the vagina. Immunology, 2005, 114, 213-224.	4.4	21
41	Expression of Toll-like receptors in murine vaginal epithelium is affected by the estrous cycle and stromal cells. Journal of Reproductive Immunology, 2007, 75, 106-119.	1.9	21
42	Changes in the Cytotoxic T-Cell Repertoire of HIV-1-Infected Individuals: Relationship to Disease Progression. Viral Immunology, 1993, 6, 85-95.	1.3	19
43	Anti-HIV-1 Activity of Elafin Depends on Its Nuclear Localization and Altered Innate Immune Activation in Female Genital Epithelial Cells. PLoS ONE, 2012, 7, e52738.	2.5	19
44	Soluble Toll-like receptor 2 is significantly elevated in HIV-1 infected breast milk and inhibits HIV-1 induced cellular activation, inflammation and infection. Aids, 2014, 28, 2023-2032.	2.2	16
45	T Cell-Derived Suppressive Activity: Evidence of Autocrine Noncytolytic Control of HIV Type 1 Transcription and Replication. AIDS Research and Human Retroviruses, 1999, 15, 1553-1561.	1.1	14
46	Trappin-2/Elafin Modulate Innate Immune Responses of Human Endometrial Epithelial Cells to Polylâ^¶C. PLoS ONE, 2012, 7, e35866.	2.5	14
47	Tweaking Innate Immunity: The Promise of Innate Immunologicals as Anti-Infectives. Canadian Journal of Infectious Diseases and Medical Microbiology, 2006, 17, 307-314.	1.9	11
48	Expression profiling of human milk derived exosomal microRNAs and their targets in HIV-1 infected mothers. Scientific Reports, 2020, 10, 12931.	3.3	9
49	CD8+ T cell-mediated suppression of HIV long terminal repeat-driven gene expression is not associated with improved clinical status. Aids, 1997 , 11 , 581 - 586 .	2.2	8
50	Production of CD8+T Cell Nonlytic Suppressive Factors by CD28, CD38, and HLA-DR Subpopulations. AIDS Research and Human Retroviruses, 2003, 19, 497-502.	1,1	6
51	Filling the Immunological Gap. , 2015, , 1291-1306.		3
52	Identification of Mutations in Proviral Long Terminal Repeats of HIV Type 1-Infected Subjects Naive to Drug Therapy. AIDS Research and Human Retroviruses, 2004, 20, 1019-1021.	1.1	2
53	Persistently HIV-1 Seronegative Nairobi Sex Workers Are Susceptible to In Vitro Infection. Canadian Journal of Infectious Diseases & Medical Microbiology, 2000, 11, 259-263.	0.3	0
54	Soluble Toll-like Receptor 2 Is Significantly Elevated in HIV-1 Infected Breast Milk and Inhibits HIV-induced Cellular Activation and Infection. AIDS Research and Human Retroviruses, 2014, 30, A237-A238.	1.1	0

#	Article	IF	CITATIONS
55	Activation of Toll-like Receptor 2 (TLR2) Heterodimers by HIV-1 Proteins Significantly Increases HIV Infection and Inflammation. AIDS Research and Human Retroviruses, 2014, 30, A128-A129.	1.1	O