Liqiang Yang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11447665/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Fluorine Substituted Conjugated Polymer of Medium Band Gap Yields 7% Efficiency in Polymerâ^'Fullerene Solar Cells. Journal of the American Chemical Society, 2011, 133, 4625-4631.	13.7	1,463
2	Rational Design of High Performance Conjugated Polymers for Organic Solar Cells. Macromolecules, 2012, 45, 607-632.	4.8	1,398
3	Development of Fluorinated Benzothiadiazole as a Structural Unit for a Polymer Solar Cell of 7 % Efficiency. Angewandte Chemie - International Edition, 2011, 50, 2995-2998.	13.8	1,130
4	The influence of molecular orientation on organic bulk heterojunction solar cells. Nature Photonics, 2014, 8, 385-391.	31.4	439
5	Solution-Processed Flexible Polymer Solar Cells with Silver Nanowire Electrodes. ACS Applied Materials & Interfaces, 2011, 3, 4075-4084.	8.0	351
6	Enhanced Photovoltaic Performance of Lowâ€Bandgap Polymers with Deep LUMO Levels. Angewandte Chemie - International Edition, 2010, 49, 7992-7995.	13.8	282
7	Parallel-like Bulk Heterojunction Polymer Solar Cells. Journal of the American Chemical Society, 2012, 134, 5432-5435.	13.7	279
8	A Weak Donorâ^'Strong Acceptor Strategy to Design Ideal Polymers for Organic Solar Cells. ACS Applied Materials & Interfaces, 2010, 2, 1377-1383.	8.0	265
9	Mobility-Controlled Performance of Thick Solar Cells Based on Fluorinated Copolymers. Journal of the American Chemical Society, 2014, 136, 15566-15576.	13.7	249
10	Quantitatively Analyzing the Influence of Side Chains on Photovoltaic Properties of Polymerâ^'Fullerene Solar Cells. Journal of Physical Chemistry C, 2010, 114, 16793-16800.	3.1	218
11	Controlling Molecular Weight of a High Efficiency Donorâ€Acceptor Conjugated Polymer and Understanding Its Significant Impact on Photovoltaic Properties. Advanced Materials, 2014, 26, 4456-4462.	21.0	190
12	Organic Solar Cells beyond One Pair of Donor–Acceptor: Ternary Blends and More. Journal of Physical Chemistry Letters, 2013, 4, 1802-1810.	4.6	186
13	Donorâ^'Acceptor Polymers Incorporating Alkylated Dithienylbenzothiadiazole for Bulk Heterojunction Solar Cells: Pronounced Effect of Positioning Alkyl Chains. Macromolecules, 2010, 43, 811-820.	4.8	175
14	Disentangling the impact of side chains and fluorine substituents of conjugated donor polymers on the performance of photovoltaic blends. Energy and Environmental Science, 2013, 6, 316-326.	30.8	153
15	Low-Band-Gap Polymers That Utilize Quinoid Resonance Structure Stabilization by Thienothiophene: Fine-Tuning of HOMO Level. Macromolecules, 2011, 44, 872-877.	4.8	75
16	A Tale of Current and Voltage: Interplay of Band Gap and Energy Levels of Conjugated Polymers in Bulk Heterojunction Solar Cells. Macromolecules, 2010, 43, 10390-10396.	4.8	61
17	Surface-Initiated Poly(3-methylthiophene) as a Hole-Transport Layer for Polymer Solar Cells with High Performance. ACS Applied Materials & Interfaces, 2012, 4, 5069-5073.	8.0	51
18	Improved Synthesis of Thienothiazole and Its Utility in Developing Polymers for Photovoltaics. Macromolecules, 2011, 44, 9146-9154.	4.8	15