Antonio Jimeno

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11445530/publications.pdf

Version: 2024-02-01

45317 66343 13,763 95 42 90 citations h-index g-index papers 96 96 96 21345 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Generation of functional human thymic cells from induced pluripotent stem cells. Journal of Allergy and Clinical Immunology, 2022, 149, 767-781.e6.	2.9	16
2	Epidermal growth factor receptor signaling in precancerous keratinocytes promotes neighboring head and neck cancer squamous cell carcinoma cancer stem cellâ€like properties and phosphoinositide 3â€kinase inhibitor insensitivity. Molecular Carcinogenesis, 2022, 61, 664-676.	2.7	3
3	Abstract CT180: Safety and efficacy of vibostolimab (vibo) plus pembrolizumab (pembro) and coformulation of vibo/pembro in ovarian cancer naive to PD-1/PD-L1 inhibitors. Cancer Research, 2022, 82, CT180-CT180.	0.9	O
4	Studying Immunotherapy Resistance in a Melanoma Autologous Humanized Mouse Xenograft. Molecular Cancer Research, 2021, 19, 346-357.	3.4	6
5	Differences in TCR repertoire and T cell activation underlie the divergent outcomes of antitumor immune responses in tumor-eradicating versus tumor-progressing hosts., 2021, 9, e001615.		18
6	A phase I pharmacokinetic and safety study of Paclitaxel Injection Concentrate for Nano-dispersion (PICN) alone and in combination with carboplatin in patients with advanced solid malignancies and biliary tract cancers. Cancer Chemotherapy and Pharmacology, 2021, 87, 779-788.	2.3	3
7	Distinct immune microenvironment profiles of therapeutic responders emerge in combined TGFβ/PD-L1 blockade-treated squamous cell carcinoma. Communications Biology, 2021, 4, 1005.	4.4	10
8	Caveolin-1 and Sox-2 are predictive biomarkers of cetuximab response in head and neck cancer. JCI Insight, 2021, 6, .	5.0	10
9	Inhibiting Translation Elongation with SVC112 Suppresses Cancer Stem Cells and Inhibits Growth in Head and Neck Squamous Carcinoma. Cancer Research, 2020, 80, 1183-1198.	0.9	12
10	Safety and clinical activity of intratumoral MEDI9197 alone and in combination with durvalumab and/or palliative radiation therapy in patients with advanced solid tumors., 2020, 8, e001095.		27
11	Cancer Cell CD44 Mediates Macrophage/Monocyte-Driven Regulation of Head and Neck Cancer Stem Cells. Cancer Research, 2020, 80, 4185-4198.	0.9	101
12	The humanized mouse: Emerging translational potential. Molecular Carcinogenesis, 2020, 59, 830-838.	2.7	18
13	MAPKAPK2 (MK2) inhibition mediates radiation-induced inflammatory cytokine production and tumor growth in head and neck squamous cell carcinoma. Oncogene, 2019, 38, 7329-7341.	5.9	15
14	Leading edge or tumor core: Intratumor cancer stem cell niches in oral cavity squamous cell carcinoma and their association with stem cell function. Oral Oncology, 2019, 98, 118-124.	1.5	13
15	Inhibition of EphB4–Ephrin-B2 Signaling Reprograms the Tumor Immune Microenvironment in Head and Neck Cancers. Cancer Research, 2019, 79, 2722-2735.	0.9	36
16	A first-in-human phase 1a study of the bispecific anti-DLL4/anti-VEGF antibody navicixizumab (OMP-305B83) in patients with previously treated solid tumors. Investigational New Drugs, 2019, 37, 461-472.	2.6	51
17	Inter―and intraâ€ŧumor heterogeneity of <i>SMAD4</i> loss in head and neck squamous cell carcinomas. Molecular Carcinogenesis, 2019, 58, 666-673.	2.7	30
18	Durvalumab for recurrent or metastatic head and neck squamous cell carcinoma: Results from a single-arm, phase II study in patients with ≥25% tumour cell PD-L1 expression who have progressed on platinum-based chemotherapy. European Journal of Cancer, 2019, 107, 142-152.	2.8	208

#	Article	IF	CITATIONS
19	Pembrolizumab versus methotrexate, docetaxel, or cetuximab for recurrent or metastatic head-and-neck squamous cell carcinoma (KEYNOTE-040): a randomised, open-label, phase 3 study. Lancet, The, 2019, 393, 156-167.	13.7	1,153
20	Bispecific antibodies for cancer therapy: A review. , 2018, 185, 122-134.		153
21	Salivary Gland Cancer Patient-Derived Xenografts Enable Characterization of Cancer Stem Cells and New Gene Events Associated with Tumor Progression. Clinical Cancer Research, 2018, 24, 2935-2943.	7.0	25
22	Phase I Study of Enavatuzumab, a First-in-Class Humanized Monoclonal Antibody Targeting the TWEAK Receptor, in Patients with Advanced Solid Tumors. Molecular Cancer Therapeutics, 2018, 17, 215-221.	4.1	13
23	Final Report of a Phase I Trial of Olaparib with Cetuximab and Radiation for Heavy Smoker Patients with Locally Advanced Head and Neck Cancer. Clinical Cancer Research, 2018, 24, 4949-4959.	7.0	70
24	Dual use of hematopoietic and mesenchymal stem cells enhances engraftment and immune cell trafficking in an allogeneic humanized mouse model of head and neck cancer. Molecular Carcinogenesis, 2018, 57, 1651-1663.	2.7	20
25	Inhibition of EphB4–Ephrin-B2 Signaling Enhances Response to Cetuximab–Radiation Therapy in Head and Neck Cancers. Clinical Cancer Research, 2018, 24, 4539-4550.	7.0	24
26	EGFR Mediates Responses to Small-Molecule Drugs Targeting Oncogenic Fusion Kinases. Cancer Research, 2017, 77, 3551-3563.	0.9	65
27	Metastatic nasopharyngeal carcinoma: Patterns of care and survival for patients receiving chemotherapy with and without local radiotherapy. Radiotherapy and Oncology, 2017, 124, 139-146.	0.6	63
28	NCCN Guidelines Insights: Head and Neck Cancers, Version 2.2017. Journal of the National Comprehensive Cancer Network: JNCCN, 2017, 15, 761-770.	4.9	263
29	A First-in-Human Phase I Study of the Anticancer Stem Cell Agent Ipafricept (OMP-54F28), a Decoy Receptor for Wnt Ligands, in Patients with Advanced Solid Tumors. Clinical Cancer Research, 2017, 23, 7490-7497.	7.0	148
30	FYCO1 regulates accumulation of post-mitotic midbodies by mediating LC3-dependent midbody degradation. Journal of Cell Science, 2017, 130, 4051-4062.	2.0	24
31	Cancer Stem Cells in Squamous Cell Carcinoma. Journal of Investigative Dermatology, 2017, 137, 31-37.	0.7	30
32	Ephrinâ€82 overexpression predicts for poor prognosis and response to therapy in solid tumors. Molecular Carcinogenesis, 2017, 56, 1189-1196.	2.7	37
33	Survival outcomes with concurrent chemoradiation for elderly patients with locally advanced head and neck cancer according to the National Cancer Data Base. Cancer, 2016, 122, 1533-1543.	4.1	84
34	Phase I study of vandetanib with radiation therapy with or without cisplatin in locally advanced head and neck squamous cell carcinoma. Head and Neck, 2016, 38, 439-447.	2.0	20
35	Enhancing radiosensitization in EphB4 receptor-expressing Head and Neck Squamous Cell Carcinomas. Scientific Reports, 2016, 6, 38792.	3.3	18
36	A Randomized, Phase II Trial of Cetuximab With or Without PX-866, an Irreversible Oral Phosphatidylinositol 3-Kinase Inhibitor, in Patients With Metastatic Colorectal Carcinoma. Clinical Colorectal Cancer, 2016, 15, 337-344.e2.	2.3	33

#	Article	IF	Citations
37	Phase Ib study of duligotuzumab (MEHD7945A) plus cisplatin/5â€fluorouracil or carboplatin/paclitaxel for firstâ€line treatment of recurrent/metastatic squamous cell carcinoma of the head and neck. Cancer, 2016, 122, 3803-3811.	4.1	34
38	Emerging from their burrow: Hedgehog pathway inhibitors for cancer. Expert Opinion on Investigational Drugs, 2016, 25, 1153-1166.	4.1	27
39	A <i>NOTCH1</i> gene copy number gain is a prognostic indicator of worse survival and a predictive biomarker to a Notch1 targeting antibody in colorectal cancer. International Journal of Cancer, 2016, 138, 195-205.	5.1	35
40	Humanized Mouse Xenograft Models: Narrowing the Tumor–Microenvironment Gap. Cancer Research, 2016, 76, 6153-6158.	0.9	189
41	Radiation dose uncertainty and correction for a mouse orthotopic and xenograft irradiation model. International Journal of Radiation Biology, 2016, 92, 50-56.	1.8	3
42	A pilot study of cetuximab and the hedgehog inhibitor IPI-926 in recurrent/metastatic head and neck squamous cell carcinoma. Oral Oncology, 2016, 53, 74-79.	1.5	32
43	Predictors of overall survival in human papillomavirus-associated oropharyngeal cancer using the National Cancer Data Base. Oral Oncology, 2016, 56, 1-7.	1.5	76
44	Head and Neck Cancers, Version 1.2015. Journal of the National Comprehensive Cancer Network: JNCCN, 2015, 13, 847-856.	4.9	185
45	DNA Damage Response Proteins and Oxygen Modulate Prostaglandin E2 Growth Factor Release in Response to Low and High LET Ionizing Radiation. Frontiers in Oncology, 2015, 5, 260.	2.8	17
46	An Inducible TGF-Î ² 2-TGFÎ ² R Pathway Modulates the Sensitivity of HNSCC Cells to Tyrosine Kinase Inhibitors Targeting Dominant Receptor Tyrosine Kinases. PLoS ONE, 2015, 10, e0123600.	2.5	5
47	FGFR1 Expression Levels Predict BGJ398 Sensitivity of FGFR1-Dependent Head and Neck Squamous Cell Cancers. Clinical Cancer Research, 2015, 21, 4356-4364.	7.0	75
48	A randomized, phase 2 trial of docetaxel with or without PX-866, an irreversible oral phosphatidylinositol 3-kinase inhibitor, in patients with relapsed or metastatic head and neck squamous cell cancer. Oral Oncology, 2015, 51, 383-388.	1.5	74
49	A Phase I First-in-Human Study of Enoticumab (REGN421), a Fully Human Delta-like Ligand 4 (Dll4) Monoclonal Antibody in Patients with Advanced Solid Tumors. Clinical Cancer Research, 2015, 21, 2695-2703.	7.0	132
50	An Oncogenic <i>NTRK</i> Fusion in a Patient with Soft-Tissue Sarcoma with Response to the Tropomyosin-Related Kinase Inhibitor LOXO-101. Cancer Discovery, 2015, 5, 1049-1057.	9.4	343
51	Targeting the Wnt pathway in human cancers: Therapeutic targeting with a focus on OMP-54F28. , 2015, 146, 1-11.		201
52	ALDH1B1 Is Crucial for Colon Tumorigenesis by Modulating Wnt/ \hat{l}^2 -Catenin, Notch and PI3K/Akt Signaling Pathways. PLoS ONE, 2015, 10, e0121648.	2.5	61
53	Expansion of Human and Murine Hematopoietic Stem and Progenitor Cells Ex Vivo without Genetic Modification Using MYC and Bcl-2 Fusion Proteins. PLoS ONE, 2014, 9, e105525.	2.5	17
54	Hedgehog Signaling Drives Radioresistance and Stroma-Driven Tumor Repopulation in Head and Neck Squamous Cancers. Cancer Research, 2014, 74, 7024-7036.	0.9	59

#	Article	IF	CITATIONS
55	Stereotactic Body Radiotherapy as Primary Therapy for Head and Neck Cancer in the Elderly or Patients with Poor Performance. Frontiers in Oncology, 2014, 4, 274.	2.8	21
56	Novel treatments for head and neck squamous cell carcinoma: preclinical identification and clinical investigation. Future Oncology, 2014, 10, 1065-1080.	2.4	8
57	A patient tumor transplant model of squamous cell cancer identifies PI3K inhibitors as candidate therapeutics in defined molecular bins. Molecular Oncology, 2013, 7, 776-790.	4.6	140
58	Personalized Chemotherapy Profiling Using Cancer Cell Lines from Selectable Mice. Clinical Cancer Research, 2013, 19, 1139-1146.	7.0	24
59	Phase I Study of the Hedgehog Pathway Inhibitor IPI-926 in Adult Patients with Solid Tumors. Clinical Cancer Research, 2013, 19, 2766-2774.	7.0	147
60	Hedgehog Signaling Alters Reliance on EGF Receptor Signaling and Mediates Anti-EGFR Therapeutic Resistance in Head and Neck Cancer. Cancer Research, 2013, 73, 3381-3392.	0.9	84
61	Molecular Pathways in Head and Neck Cancer: EGFR, PI3K, and More. American Society of Clinical Oncology Educational Book / ASCO American Society of Clinical Oncology Meeting, 2013, , 246-255.	3.8	46
62	Integrated preclinical and clinical development of S-trans, trans-farnesylthiosalicylic acid (FTS,) Tj ETQq0 0 0 rgB	T /Qverloc	k 19 ₂ Tf 50 46
63	Phase I Study of Rigosertib, an Inhibitor of the Phosphatidylinositol 3-Kinase and Polo-like Kinase 1 Pathways, Combined with Gemcitabine in Patients with Solid Tumors and Pancreatic Cancer. Clinical Cancer Research, 2012, 18, 2048-2055.	7.0	50
64	Patient-derived tumour xenografts as models for oncology drug development. Nature Reviews Clinical Oncology, 2012, 9, 338-350.	27.6	1,091
65	A phase I study of MEHD7945A (MEHD), a first-in-class HER3/EGFR dual-action antibody, in patients (pts) with refractory/recurrent epithelial tumors: Expansion cohorts Journal of Clinical Oncology, 2012, 30, 2568-2568.	1.6	9
66	Phase I study of oral rigosertib in patients with advanced solid tumors Journal of Clinical Oncology, 2012, 30, 3017-3017.	1.6	3
67	PX-866 and docetaxel in patients with advanced solid tumors Journal of Clinical Oncology, 2012, 30, 3024-3024.	1.6	4
68	Randomized phase III study of erlotinib versus observation in patients with no evidence of disease progression after first-line platin-based chemotherapy for ovarian carcinoma: A GCIG and EORTC-GCG study Journal of Clinical Oncology, 2012, 30, LBA5000-LBA5000.	1.6	7
69	Randomized phase III study of erlotinib versus observation in patients with no evidence of disease progression after first-line platin-based chemotherapy for ovarian carcinoma: A GCIG and EORTC-GCG study Journal of Clinical Oncology, 2012, 30, LBA5000-LBA5000.	1.6	12
70	Human pharmacokinetic (PK) characterization of the novel dual-action anti-HER3/EGFR antibody MEHD7945A (MEHD) in patients with refractory/recurrent epithelial tumors Journal of Clinical Oncology, 2012, 30, 2567-2567.	1.6	1
71	Caspase 3–mediated stimulation of tumor cell repopulation during cancer radiotherapy. Nature Medicine, 2011, 17, 860-866.	30.7	705
72	Tumor Engraftment in Nude Mice and Enrichment in Stroma-Related Gene Pathways Predict Poor Survival and Resistance to Gemcitabine in Patients with Pancreatic Cancer. Clinical Cancer Research, 2011, 17, 5793-5800.	7.0	204

#	Article	IF	CITATIONS
73	Prognostic Significance of Tumorigenic Cells With Mesenchymal Features in Pancreatic Adenocarcinoma. Journal of the National Cancer Institute, 2010, 102, 340-351.	6.3	392
74	A Fine-Needle Aspirate–Based Vulnerability Assay Identifies Polo-Like Kinase 1 as a Mediator of Gemcitabine Resistance in Pancreatic Cancer. Molecular Cancer Therapeutics, 2010, 9, 311-318.	4.1	46
75	More than Markers: Biological Significance of Cancer Stem Cell-Defining Molecules. Molecular Cancer Therapeutics, 2010, 9, 2450-2457.	4.1	183
76	Efficacy and pharmacodynamic effects of bosutinib (SKI-606), a Src/Abl inhibitor, in freshly generated human pancreas cancer xenografts. Molecular Cancer Therapeutics, 2009, 8, 1484-1493.	4.1	39
77	[¹⁸ F]Fluorodeoxyglucose Positron Emission Tomography Correlates With Akt Pathway Activity but Is Not Predictive of Clinical Outcome During mTOR Inhibitor Therapy. Journal of Clinical Oncology, 2009, 27, 2697-2704.	1.6	119
78	A direct pancreatic cancer xenograft model as a platform for cancer stem cell therapeutic development. Molecular Cancer Therapeutics, 2009, 8, 310-314.	4.1	250
79	Characterizing DNA methylation patterns in pancreatic cancer genome. Molecular Oncology, 2009, 3, 425-438.	4.6	133
80	Antitumor Effects and Biomarkers of Activity of AZD0530, a Src Inhibitor, in Pancreatic Cancer. Clinical Cancer Research, 2009, 15, 4138-4146.	7.0	79
81	Core Signaling Pathways in Human Pancreatic Cancers Revealed by Global Genomic Analyses. Science, 2008, 321, 1801-1806.	12.6	3,755
82	Activated Epidermal Growth Factor Receptor as a Novel Target in Pancreatic Cancer Therapy. Journal of Proteome Research, 2008, 7, 4651-4658.	3.7	42
83	Coordinated Epidermal Growth Factor Receptor Pathway Gene Overexpression Predicts Epidermal Growth Factor Receptor Inhibitor Sensitivity in Pancreatic Cancer. Cancer Research, 2008, 68, 2841-2849.	0.9	89
84	Antitumor activity and molecular effects of the novel heat shock protein 90 inhibitor, IPI-504, in pancreatic cancer. Molecular Cancer Therapeutics, 2008, 7, 3275-3284.	4.1	77
85	Genome-wide profiling at methylated promoters in pancreatic adenocarcinoma. Cancer Biology and Therapy, 2008, 7, 1146-1156.	3.4	165
86	Blockade of Hedgehog Signaling Inhibits Pancreatic Cancer Invasion and Metastases: A New Paradigm for Combination Therapy in Solid Cancers. Cancer Research, 2007, 67, 2187-2196.	0.9	647
87	Optimizing the development of targeted agents in pancreatic cancer: tumor fine-needle aspiration biopsy as a platform for novel prospective ex vivo drug sensitivity assays. Molecular Cancer Therapeutics, 2007, 6, 515-523.	4.1	26
88	Development of two novel benzoylphenylurea sulfur analogues and evidence that the microtubule-associated protein tau is predictive of their activity in pancreatic cancer. Molecular Cancer Therapeutics, 2007, 6, 1509-1516.	4.1	29
89	Dual mitogen-activated protein kinase and epidermal growth factor receptor inhibition in biliary and pancreatic cancer. Molecular Cancer Therapeutics, 2007, 6, 1079-1088.	4.1	30
90	Analysis of biologic surrogate markers from a Children's Oncology Group Phase I trial of gefitinib in pediatric patients with solid tumors. Pediatric Blood and Cancer, 2007, 49, 352-357.	1.5	12

ANTONIO JIMENO

#	Article	IF	CITATIONS
91	Weekly docetaxel in patients with recurrent and/or metastatic squamous cell carcinoma of the head and neck. Cancer, 2006 , 106 , 106 - 111 .	4.1	39
92	C-fos Assessment as a Marker of Anti–Epidermal Growth Factor Receptor Effect. Cancer Research, 2006, 66, 2385-2390.	0.9	36
93	An <i>In vivo</i> Platform for Translational Drug Development in Pancreatic Cancer. Clinical Cancer Research, 2006, 12, 4652-4661.	7.0	407
94	Assessment of celecoxib pharmacodynamics in pancreatic cancer. Molecular Cancer Therapeutics, 2006, 5, 3240-3247.	4.1	30
95	Epidermal Growth Factor Receptor Dynamics Influences Response to Epidermal Growth Factor Receptor Targeted Agents. Cancer Research, 2005, 65, 3003-3010.	0.9	105