
Xiaojun Liu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11439144/publications.pdf Version: 2024-02-01

XIAOUUNILUU

#	Article	IF	CITATIONS
1	MicroRNA Expression Signature and Antisense-Mediated Depletion Reveal an Essential Role of MicroRNA in Vascular Neointimal Lesion Formation. Circulation Research, 2007, 100, 1579-1588.	4.5	848
2	MicroRNA-145, a Novel Smooth Muscle Cell Phenotypic Marker and Modulator, Controls Vascular Neointimal Lesion Formation. Circulation Research, 2009, 105, 158-166.	4.5	613
3	A Necessary Role of miR-221 and miR-222 in Vascular Smooth Muscle Cell Proliferation and Neointimal Hyperplasia. Circulation Research, 2009, 104, 476-487.	4.5	518
4	MicroRNAs Are Aberrantly Expressed in Hypertrophic Heart. American Journal of Pathology, 2007, 170, 1831-1840.	3.8	486
5	MicroRNA Expression Signature and the Role of MicroRNA-21 in the Early Phase of Acute Myocardial Infarction. Journal of Biological Chemistry, 2009, 284, 29514-29525.	3.4	409
6	MicroRNA-21 protects against the H2O2-induced injury on cardiac myocytes via its target gene PDCD4. Journal of Molecular and Cellular Cardiology, 2009, 47, 5-14.	1.9	340
7	miR-222 Is Necessary for Exercise-Induced Cardiac Growth and Protects against Pathological Cardiac Remodeling. Cell Metabolism, 2015, 21, 584-595.	16.2	316
8	A translational study of circulating cell-free microRNA-1 in acute myocardial infarction. Clinical Science, 2010, 119, 87-95.	4.3	298
9	lschaemic preconditioning-regulated miR-21 protects heart against ischaemia/reperfusion injury via anti-apoptosis through its target PDCD4. Cardiovascular Research, 2010, 87, 431-439.	3.8	296
10	Involvement of MicroRNAs in Hydrogen Peroxide-mediated Gene Regulation and Cellular Injury Response in Vascular Smooth Muscle Cells. Journal of Biological Chemistry, 2009, 284, 7903-7913.	3.4	211
11	Cell-specific effects of miR-221/222 in vessels: Molecular mechanism and therapeutic application. Journal of Molecular and Cellular Cardiology, 2012, 52, 245-255.	1.9	197
12	miR-17-3p Contributes to Exercise-Induced Cardiac Growth and Protects against Myocardial Ischemia-Reperfusion Injury. Theranostics, 2017, 7, 664-676.	10.0	174
13	A translational study of urine miRNAs in acute myocardial infarction. Journal of Molecular and Cellular Cardiology, 2012, 53, 668-676.	1.9	157
14	Exercise induces new cardiomyocyte generation in the adult mammalian heart. Nature Communications, 2018, 9, 1659.	12.8	134
15	A novel pathogenesis-related protein (SsPR10) from Solanum surattense with ribonucleolytic and antimicrobial activity is stress- and pathogen-inducible. Journal of Plant Physiology, 2006, 163, 546-556.	3.5	88
16	MicroRNA-31 Regulated by the Extracellular Regulated Kinase Is Involved in Vascular Smooth Muscle Cell Growth via Large Tumor Suppressor Homolog 2. Journal of Biological Chemistry, 2011, 286, 42371-42380.	3.4	82
17	Micro <scp>RNA</scp> expression profile and functional analysis reveal that mi <scp>R</scp> â€382 is a critical novel gene of alcohol addiction. EMBO Molecular Medicine, 2013, 5, 1402-1414.	6.9	64
18	Region‣pecific Induction of FosB/ΔFosB by Voluntary Alcohol Intake: Effects of Naltrexone. Alcoholism: Clinical and Experimental Research, 2010, 34, 1742-1750.	2.4	52

Xiaojun Liu

#	Article	IF	CITATIONS
19	Plasma Circulating Extracellular RNAs in Left Ventricular Remodeling Post-Myocardial Infarction. EBioMedicine, 2018, 32, 172-181.	6.1	52
20	What do we know about the cardiac benefits of exercise?. Trends in Cardiovascular Medicine, 2015, 25, 529-536.	4.9	47
21	Unexpected pro-injury effect of propofol on vascular smooth muscle cells with increased oxidative stress*. Critical Care Medicine, 2011, 39, 738-745.	0.9	46
22	IncExACT1 and DCHS2 Regulate Physiological and Pathological Cardiac Growth. Circulation, 2022, 145, 1218-1233.	1.6	43
23	An essential role of PDCD4 in vascular smooth muscle cell apoptosis and proliferation: implications for vascular disease. American Journal of Physiology - Cell Physiology, 2010, 298, C1481-C1488.	4.6	34
24	Associations of Circulating Extracellular RNAs With Myocardial Remodeling and Heart Failure. JAMA Cardiology, 2018, 3, 871.	6.1	33
25	MicroRNAs Associated With Reverse Left Ventricular Remodeling in Humans Identify Pathways of Heart Failure Progression. Circulation: Heart Failure, 2018, 11, e004278.	3.9	32
26	Flank Sequences of miRâ€145/143 and Their Aberrant Expression inÂVascular Disease: Mechanism and Therapeutic Application. Journal of the American Heart Association, 2013, 2, e000407.	3.7	28
27	cDNA cloning and characterization of a mannose-binding lectin fromZingiber officinaleRoscoe (ginger) rhizomes. Journal of Biosciences, 2005, 30, 213-220.	1.1	19
28	Molecular cloning and characterization of a novel ice gene from Capsella bursa-pastoris. Molecular Biology, 2005, 39, 18-25.	1.3	14
29	The Role of MicroRNAs in the Cardiac Response to Exercise. Cold Spring Harbor Perspectives in Medicine, 2017, 7, a029850.	6.2	12
30	cDNA cloning and expression analysis of a mannose-binding lectin from Pinellia pedatisecta. Journal of Biosciences, 2007, 32, 241-249.	1.1	9
31	Isolation and Expression Profiling of the Pto-Like Gene SsPto from Solanum surattense. Molecular Biology, 2005, 39, 684-695.	1.3	2
32	MicroRNAs are aberrantly expressed in hypertrophic heart: do they play a role in cardiac hypertrophy?. FASEB Journal, 2007, 21, .	0.5	1
33	The Effects of Some MicroRNAs in Vascular Neointimal Formation May Depend on Cell Cycle Phase. Circulation Research, 2008, 102, .	4.5	0