Marie Touchon

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1143885/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Organised Genome Dynamics in the Escherichia coli Species Results in Highly Diverse Adaptive Paths. PLoS Genetics, 2009, 5, e1000344.	3.5	1,005
2	CRISPRCasFinder, an update of CRISRFinder, includes a portable version, enhanced performance and integrates search for Cas proteins. Nucleic Acids Research, 2018, 46, W246-W251.	14.5	985
3	MacSyFinder: A Program to Mine Genomes for Molecular Systems with an Application to CRISPR-Cas Systems. PLoS ONE, 2014, 9, e110726.	2.5	315
4	Identification of protein secretion systems in bacterial genomes. Scientific Reports, 2016, 6, 23080.	3.3	315
5	Genetic and life-history traits associated with the distribution of prophages in bacteria. ISME Journal, 2016, 10, 2744-2754.	9.8	314
6	Pervasive domestication of defective prophages by bacteria. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 12127-12132.	7.1	304
7	The interplay of restriction-modification systems with mobile genetic elements and their prokaryotic hosts. Nucleic Acids Research, 2014, 42, 10618-10631.	14.5	246
8	Embracing the enemy: the diversification of microbial gene repertoires by phage-mediated horizontal gene transfer. Current Opinion in Microbiology, 2017, 38, 66-73.	5.1	238
9	Identification and analysis of integrons and cassette arrays in bacterial genomes. Nucleic Acids Research, 2016, 44, 4539-4550.	14.5	235
10	Systematic and quantitative view of the antiviral arsenal of prokaryotes. Nature Communications, 2022, 13, 2561.	12.8	208
11	Causes of Insertion Sequences Abundance in Prokaryotic Genomes. Molecular Biology and Evolution, 2007, 24, 969-981.	8.9	202
12	The Small, Slow and Specialized CRISPR and Anti-CRISPR of Escherichia and Salmonella. PLoS ONE, 2010, 5, e11126.	2.5	198
13	The Adaptation of Temperate Bacteriophages to Their Host Genomes. Molecular Biology and Evolution, 2013, 30, 737-751.	8.9	196
14	The chromosomal organization of horizontal gene transfer in bacteria. Nature Communications, 2017, 8, 841.	12.8	184
15	Regulation of genetic flux between bacteria by restriction–modification systems. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 5658-5663.	7.1	161
16	Phylogenetic background and habitat drive the genetic diversification of Escherichia coli. PLoS Genetics, 2020, 16, e1008866.	3.5	131
17	The chromosomal accommodation and domestication of mobile genetic elements. Current Opinion in Microbiology, 2014, 22, 22-29.	5.1	73
18	Abundance and co-occurrence of extracellular capsules increase environmental breadth: Implications for the emergence of pathogens. PLoS Pathogens, 2017, 13, e1006525.	4.7	62

Marie Touchon

#	Article	IF	CITATIONS
19	Coevolution of the Organization and Structure of Prokaryotic Genomes. Cold Spring Harbor Perspectives in Biology, 2016, 8, a018168.	5.5	55
20	Causes and Consequences of Bacteriophage Diversification via Genetic Exchanges across Lifestyles and Bacterial Taxa. Molecular Biology and Evolution, 2021, 38, 2497-2512.	8.9	48
21	Manipulating or Superseding Host Recombination Functions: A Dilemma That Shapes Phage Evolvability. PLoS Genetics, 2013, 9, e1003825.	3.5	41
22	Atypical organizations and epistatic interactions of CRISPRs and cas clusters in genomes and their mobile genetic elements. Nucleic Acids Research, 2020, 48, 748-760.	14.5	32
23	A matter of background: DNA repair pathways as a possible cause for the sparse distribution of CRISPR-Cas systems in bacteria. Philosophical Transactions of the Royal Society B: Biological Sciences, 2019, 374, 20180088.	4.0	30
24	Phylogenetic background and habitat drive the genetic diversification of Escherichia coli. , 2020, 16, e1008866.		0
25	Phylogenetic background and habitat drive the genetic diversification of Escherichia coli. , 2020, 16, e1008866.		0
26	Phylogenetic background and habitat drive the genetic diversification of Escherichia coli. , 2020, 16, e1008866.		0
27	Phylogenetic background and habitat drive the genetic diversification of Escherichia coli. , 2020, 16, e1008866.		0