Robert A Kirken

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11434304/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Identification of a Potent Cytotoxic Pyrazole with Anti-Breast Cancer Activity That Alters Multiple Pathways. Cells, 2022, 11, 254.	4.1	6
2	Identification of a Unique Cytotoxic Thieno[2,3-c]Pyrazole Derivative with Potent and Selective Anticancer Effects In Vitro. Biology, 2022, 11, 930.	2.8	1
3	Pharmacodynamic biomarkers in metronomic chemotherapy: multiplex cytokine measurements in gastrointestinal cancer patients. Clinical and Experimental Medicine, 2021, 21, 149-159.	3.6	5
4	The Many Faces of JAKs and STATs Within the COVID-19 Storm. Frontiers in Immunology, 2021, 12, 690477.	4.8	18
5	Phosphorylation of CrkL S114 induced by common gamma chain cytokines and T-cell receptor signal transduction. Scientific Reports, 2021, 11, 16951.	3.3	1
6	Quadruple and Truncated MEK3 Mutants Identified from Acute Lymphoblastic Leukemia Promote Degradation and Enhance Proliferation. International Journal of Molecular Sciences, 2021, 22, 12210.	4.1	2
7	Bif-1 Interacts with Prohibitin-2 to Regulate Mitochondrial Inner Membrane during Cell Stress and Apoptosis. Journal of the American Society of Nephrology: JASN, 2019, 30, 1174-1191.	6.1	25
8	Integration of a Personalized Molecular Targeted Therapy into the Multimodal Treatment of Refractory Childhood Embryonal Tumor with Multilayered Rosettes (ETMR). Case Reports in Oncology, 2019, 12, 211-217.	0.7	3
9	Green barley mitigates cytotoxicity in human lymphocytes undergoing aggressive oxidative stress, via activation of both the Lyn/PI3K/Akt and MAPK/ERK pathways. Scientific Reports, 2019, 9, 6005.	3.3	31
10	Optimization of biomarkers-based classification scores as progression-free survival predictors: an intuitive graphical representation. Future Science OA, 2018, 4, FSO346.	1.9	1
11	Isoproterenol-induced beta-2 adrenergic receptor activation negatively regulates interleukin-2 signaling. Biochemical Journal, 2018, 475, 2907-2923.	3.7	15
12	Impact of CTLA-4 blockade in conjunction with metronomic chemotherapy on preclinical breast cancer growth. British Journal of Cancer, 2017, 116, 324-334.	6.4	35
13	The prohibitin protein complex promotes mitochondrial stabilization and cell survival in hematologic malignancies. Oncotarget, 2017, 8, 65445-65456.	1.8	25
14	Transforming Mutations of Jak3 (A573V and M511I) Show Differential Sensitivity to Selective Jak3 Inhibitors. Clinical Cancer Drugs, 2016, 3, 131-137.	0.3	16
15	Sensitivity of imatinib-resistant T315I BCR-ABL CML to a synergistic combination of ponatinib and forskolin treatment. Tumor Biology, 2016, 37, 12643-12654.	1.8	10
16	Interleukin-2 Receptor β Thr-450 Phosphorylation Is a Positive Regulator for Receptor Complex Stability and Activation of Signaling Molecules. Journal of Biological Chemistry, 2015, 290, 20972-20983.	3.4	11
17	Analysis of Janus Tyrosine Kinase Phosphorylation and Activation. Methods in Molecular Biology, 2013, 967, 3-20.	0.9	4
18	Forskolin-inducible cAMP Pathway Negatively Regulates T-cell Proliferation by Uncoupling the Interleukin-2 Receptor Complex, Journal of Biological Chemistry, 2013, 288, 7137-7146	3.4	41

ROBERT A KIRKEN

#	Article	IF	CITATIONS
19	Genome Wide Mapping Reveals PDE4B as an IL-2 Induced STAT5 Target Gene in Activated Human PBMCs and Lymphoid Cancer Cells. PLoS ONE, 2013, 8, e57326.	2.5	10
20	Searching in Mother Nature for Anti-Cancer Activity: Anti-Proliferative and Pro-Apoptotic Effect Elicited by Green Barley on Leukemia/Lymphoma Cells. PLoS ONE, 2013, 8, e73508.	2.5	79
21	Signal Transducer and Activator of Transcription 5b (Stat5b) Serine 193 Is a Novel Cytokine-induced Phospho-regulatory Site That Is Constitutively Activated in Primary Hematopoietic Malignancies. Journal of Biological Chemistry, 2012, 287, 16596-16608.	3.4	36
22	Uncoupling JAK3 activation induces apoptosis in human lymphoid cancer cells via regulating critical survival pathways. FEBS Letters, 2010, 584, 1515-1520.	2.8	6
23	Protein Phosphatase 2A Regulates Interleukin-2 Receptor Complex Formation and JAK3/STAT5 Activation. Journal of Biological Chemistry, 2010, 285, 3582-3591.	3.4	35
24	STAT5 regulation of BCL10 parallels constitutive NFκB activation in lymphoid tumor cells. Molecular Cancer, 2009, 8, 67.	19.2	31
25	Transcription Factor Stat5 Synergizes with Androgen Receptor in Prostate Cancer Cells. Cancer Research, 2008, 68, 236-248.	0.9	96
26	Phosphorylation of Human Jak3 at Tyrosines 904 and 939 Positively Regulates Its Activity. Molecular and Cellular Biology, 2008, 28, 2271-2282.	2.3	26
27	The PHB1/2 Phosphocomplex Is Required for Mitochondrial Homeostasis and Survival of Human T Cells. Journal of Biological Chemistry, 2008, 283, 4699-4713.	3.4	84
28	Transcription Factor Signal Transducer and Activator of Transcription 5 Promotes Growth of Human Prostate Cancer Cells <i>In vivo</i> . Clinical Cancer Research, 2008, 14, 1317-1324.	7.0	92
29	STAT3: An Important Regulator of Multiple Cytokine Functions. Transplantation, 2008, 85, 1372-1377.	1.0	66
30	Coactivation of Janus Tyrosine Kinase (Jak)1 Positively Modulates Prolactin-Jak2 Signaling in Breast Cancer: Recruitment of ERK and Signal Transducer and Activator of Transcription (Stat)3 and Enhancement of Akt and Stat5a/b Pathways. Molecular Endocrinology, 2007, 21, 2218-2232.	3.7	58
31	Regulation of T cell homeostasis by JAKs and STATs. Archivum Immunologiae Et Therapiae Experimentalis, 2007, 55, 231-245.	2.3	35
32	Autocrine release of interleukin-9 promotes Jak3-dependent survival of ALK+ anaplastic large-cell lymphoma cells. Blood, 2006, 108, 2407-2415.	1.4	71
33	Janus Tyrosine Kinases and Signal Transducers and Activators of Transcription Regulate Critical Functions of T Cells in Allograft Rejection and Transplantation Tolerance. Transplantation, 2006, 82, 295-303.	1.0	21
34	Allograft Rejection Requires STAT5a/b-Regulated Antiapoptotic Activity in T Cells but Not B Cells. Journal of Immunology, 2006, 176, 128-137.	0.8	11
35	A Preferential Role for STAT5, not Constitutively Active STAT3, in Promoting Survival of a Human Lymphoid Tumor. Journal of Immunology, 2006, 177, 5032-5040.	0.8	21
36	The Mannich Base NC1153 Promotes Long-Term Allograft Survival and Spares the Recipient from Multiple Toxicities. Journal of Immunology, 2005, 175, 4236-4246.	0.8	39

ROBERT A KIRKEN

#	Article	IF	CITATIONS
37	Unique advantage of Janus kinase 3 as a target for selective and nontoxic immunosupression. Expert Review of Clinical Immunology, 2005, 1, 307-310.	3.0	1
38	Interleukin 4 Regulates Phosphorylation of Serine 756 in the Transactivation Domain of Stat6. Journal of Biological Chemistry, 2004, 279, 25196-25203.	3.4	42
39	Regulation of Lymphoid Cell Apoptosis by Jaks and Stats;. Critical Reviews in Immunology, 2004, 24, 87-110.	0.5	10
40	Specific Inhibition of Stat5a/b Promotes Apoptosis of IL-2-Responsive Primary and Tumor-Derived Lymphoid Cells. Journal of Immunology, 2003, 171, 3919-3927.	0.8	35
41	New directions in T-cell signal transduction and transplantation tolerance. Current Opinion in Organ Transplantation, 2002, 7, 18-25.	1.6	0
42	Allochimeric class I MHC protein-induced tolerance by partial TCR engagement requires activation of both CTL4- and common ??-chain-dependent cytokine signals1. Transplantation, 2002, 73, 1227-1235.	1.0	9
43	Selective inhibitor of Janus tyrosine kinase 3, PNU156804, prolongs allograft survival and acts synergistically with cyclosporine but additively with rapamycin. Blood, 2002, 99, 680-689.	1.4	97
44	Interleukin-2 family cytokines stimulate phosphorylation of the Pro-Ser-Pro motif of Stat5 transcription factors in human T cells: resistance to suppression of multiple serine kinase pathways. Journal of Leukocyte Biology, 2002, 72, 819-28.	3.3	23
45	Role of serine phosphorylation of Stat5a in prolactin-stimulated β-casein gene expression. Molecular and Cellular Endocrinology, 2001, 183, 151-163.	3.2	80
46	Concomitant Inhibition of Janus Kinase 3 and Calcineurin-Dependent Signaling Pathways Synergistically Prolongs the Survival of Rat Heart Allografts. Journal of Immunology, 2001, 166, 3724-3732.	0.8	65
47	SELECTIVE INHIBITION OF IL-2 GENE EXPRESSION BY IL-2 ANTISENSE OLIGONUCLEOTIDES BLOCKS HEART ALLOGRAFT REJECTION1. Transplantation, 2001, 72, 915-923.	1.0	7
48	Targeted disruption of Stat6 DNA binding activity by an oligonucleotide decoy blocks IL-4–driven TH2 cell response. Blood, 2000, 95, 1249-1257.	1.4	65
49	Selective disruption of interleukin 4 autocrine-regulated loop by a tyrosine kinase inhibitor restricts activity of T-helper 2 cells. Blood, 2000, 95, 3816-3822.	1.4	15
50	Functional Uncoupling of the Janus Kinase 3-Stat5 Pathway in Malignant Growth of Human T Cell Leukemia Virus Type 1-Transformed Human T Cells. Journal of Immunology, 2000, 165, 5097-5104.	0.8	42
51	Selective disruption of interleukin 4 autocrine-regulated loop by a tyrosine kinase inhibitor restricts activity of T-helper 2 cells. Blood, 2000, 95, 3816-3822.	1.4	2
52	Tyrphostin AG-490 inhibits cytokine-mediated JAK3/STAT5a/b signal transduction and cellular proliferation of antigen-activated human T cells. Journal of Leukocyte Biology, 1999, 65, 891-899.	3.3	100
53	Mechanisms of cytokine signal transduction: IL-2, IL-4 and prolactin as hematopoietin receptor models. Veterinary Immunology and Immunopathology, 1998, 63, 27-36.	1.2	1
54	Differential Control of the Phosphorylation State of Proline-juxtaposed Serine Residues Ser725 of Stat5a and Ser730 of Stat5b in Prolactin-sensitive Cells. Journal of Biological Chemistry, 1998, 273, 30218-30224.	3.4	132

ROBERT A KIRKEN

#	Article	IF	CITATIONS
55	Prolactin Stimulates Serine/Tyrosine Phosphorylation and Formation of Heterocomplexes of Multiple Stat5 Isoforms in Nb2 Lymphocytes. Journal of Biological Chemistry, 1997, 272, 14098-14103.	3.4	73
56	Two Discrete Regions of Interleukin-2 (IL2) Receptor Î ² Independently Mediate IL2 Activation of a PD98059/Rapamycin/Wortmannin-insensitive Stat5a/b Serine Kinase. Journal of Biological Chemistry, 1997, 272, 15459-15465.	3.4	56
57	ldentification of a Stat-6-responsive element in the promoter of the human interleukin-4 gene. European Journal of Immunology, 1997, 27, 1982-1987.	2.9	45
58	Prolactin recruits STAT1, STAT3 and STAT5 independent of conserved receptor tyrosines TYR402, TYR479, TYR515 and TYR580. Molecular and Cellular Endocrinology, 1996, 117, 131-140.	3.2	157
59	Interleukin-13 is a potent activator of JAK3 and STAT6 in cells expressing interleukin-2 receptor-γ and interleukin-4 receptor-α. Biochemical Journal, 1996, 319, 865-872.	3.7	58
60	but Not JAK1 Activation of JAK3Is Critical to Interleukin-4 (IL4) Stimulated Proliferation and Requires a Membrane-proximal Region of IL4 Receptor α. Journal of Biological Chemistry, 1995, 270, 9630-9637.	3.4	57
61	Activation of JAK3, but not JAK1, is critical for IL-2-induced proliferation and STAT5 recruitment by a COOH-terminal region of the IL-2 receptor β-chain. Cytokine, 1995, 7, 689-700.	3.2	85
62	Phosphorylation and activation of the Jak-3 Janus kinase in response to interleukin-2. Nature, 1994, 370, 151-153.	27.8	588
63	Involvement of JAK-family tyrosine kinases in hematopoietin receptor signal transduction. Progress in Growth Factor Research, 1994, 5, 195-211.	1.6	13