
Backil Sung

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11433252/publications.pdf Version: 2024-02-01

RACKII SUNC

#	Article	IF	CITATIONS
1	Chronic Morphine Induces Downregulation of Spinal Glutamate Transporters: Implications in Morphine Tolerance and Abnormal Pain Sensitivity. Journal of Neuroscience, 2002, 22, 8312-8323.	3.6	391
2	Altered Expression and Uptake Activity of Spinal Glutamate Transporters after Nerve Injury Contribute to the Pathogenesis of Neuropathic Pain in Rats. Journal of Neuroscience, 2003, 23, 2899-2910.	3.6	356
3	Neuronal Apoptosis Associated with Morphine Tolerance: Evidence for an Opioid-Induced Neurotoxic Mechanism. Journal of Neuroscience, 2002, 22, 7650-7661.	3.6	276
4	Brain indoleamine 2,3-dioxygenase contributes to the comorbidity of pain and depression. Journal of Clinical Investigation, 2012, 122, 2940-2954.	8.2	269
5	Upregulation of spinal cannabinoid-1-receptors following nerve injury enhances the effects of Win 55,212-2 on neuropathic pain behaviors in rats. Pain, 2003, 105, 275-283.	4.2	164
6	Central Glucocorticoid Receptors Modulate the Expression and Function of Spinal NMDA Receptors after Peripheral Nerve Injury. Journal of Neuroscience, 2005, 25, 488-495.	3.6	117
7	Expression of Central Glucocorticoid Receptors after Peripheral Nerve Injury Contributes to Neuropathic Pain Behaviors in Rats. Journal of Neuroscience, 2004, 24, 8595-8605.	3.6	116
8	Nitric oxide mediates behavioral signs of neuropathic pain in an experimental rat model. NeuroReport, 1998, 9, 367-372.	1.2	86
9	Expression of Spinal NMDA Receptor and PKCÂ after Chronic Morphine Is Regulated by Spinal Glucocorticoid Receptor. Journal of Neuroscience, 2005, 25, 11145-11154.	3.6	86
10	Exacerbated mechanical allodynia in rats with depression-like behavior. Brain Research, 2008, 1200, 27-38.	2.2	71
11	Supraspinal involvement in the production of mechanical allodynia by spinal nerve injury in rats. Neuroscience Letters, 1998, 246, 117-119.	2.1	70
12	A rat model of unilateral hindpaw burn injury: Slowly developing rightwards shift of the morphine dose–response curve. Pain, 2005, 116, 87-95.	4.2	49
13	Morphine Induces Ubiquitin-Proteasome Activity and Glutamate Transporter Degradation. Journal of Biological Chemistry, 2008, 283, 21703-21713.	3.4	47
14	Central glucocorticoid receptors regulate the upregulation of spinal cannabinoid-1 receptors after peripheral nerve injury in rats. Pain, 2007, 131, 96-105.	4.2	44
15	Altered spinal arachidonic acid turnover after peripheral nerve injury regulates regional glutamate concentration and neuropathic pain behaviors in rats. Pain, 2007, 131, 121-131.	4.2	41
16	Downregulation of spinal glutamate transporter EAAC1 followingnerve injury is regulated by central glucocorticoid receptors in rats. Pain, 2006, 120, 78-85.	4.2	40
17	Evidence for a long-term influence on morphie tolerance after previous morphine exposure: role of neuronal glucocorticoid receptors. Pain, 2005, 114, 81-92.	4.2	38
18	Association of kappa opioid receptor mRNA upregulation in dorsal root ganglia with mechanical allodynia in mice following nerve injury. Neuroscience Letters, 2000, 291, 163-166.	2.1	37

BACKIL SUNG

#	Article	IF	CITATIONS
19	Spinal Glucocorticoid Receptors Contribute to the Development of Morphine Tolerance in Rats. Anesthesiology, 2005, 102, 832-837.	2.5	35
20	Regulation of the trigeminal NR1 subunit expression induced by inflammation of the temporomandibular joint region in rats. Pain, 2009, 141, 97-103.	4.2	30
21	ls sympathetic sprouting in the dorsal root ganglia responsible for the production of neuropathic pain in a rat model?. Neuroscience Letters, 1999, 269, 103-106.	2.1	27
22	Intrathecal midazolam regulates spinal AMPA receptor expression and function after nerve injury in rats. Brain Research, 2006, 1123, 80-88.	2.2	24
23	A combined effect of dextromethorphan and melatonin on neuropathic pain behavior in rats. Brain Research, 2009, 1288, 42-49.	2.2	24
24	Amount of sympathetic sprouting in the dorsal root ganglia is not correlated to the level of sympathetic dependence of neuropathic pain in a rat model. Neuroscience Letters, 1998, 245, 21-24.	2.1	23
25	Role of signals from the dorsal root ganglion in neuropathic pain in a rat model. Neuroscience Letters, 2000, 288, 147-150.	2.1	22
26	Inhibition of the ubiquitin–proteasome activity prevents glutamate transporter degradation and morphine tolerance. Pain, 2008, 140, 472-478.	4.2	20
27	Time-dependent effect of epidural steroid on pain behavior induced by chronic compression of dorsal root ganglion in rats. Brain Research, 2007, 1174, 39-46.	2.2	16
28	Decrease in spinal CGRP and substance P is not related to neuropathic pain in a rat model. NeuroReport, 2001, 12, 175-178.	1.2	14
29	A mouse model for peripheral neuropathy produced by a partial injury of the nerve supplying the tail. Neuroscience Letters, 2002, 322, 153-156.	2.1	14
30	Peripherally administered amitriptyline derivatives have differential anti-allodynic effects in a rat model of neuropathic pain. Neuroscience Letters, 2004, 357, 115-118.	2.1	10
31	Increases in spinal vasoactive intestinal polypeptide and neuropeptide Y are not sufficient for the genesis of neuropathic pain in rats. Neuroscience Letters, 2003, 342, 109-113.	2.1	8
32	Developmental characteristics of neuropathic pain induced by peripheral nerve injury of rats during neonatal period. Neuroscience Research, 2008, 61, 412-419.	1.9	5
33	Animal Models of Acute Surgical Pain. Methods in Molecular Biology, 2010, 617, 31-39.	0.9	4