Ramon Gonzalez

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1143295/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Truth in wine yeast. Microbial Biotechnology, 2022, 15, 1339-1356.	4.2	26
2	Exploring the suitability of Saccharomyces cerevisiae strains for winemaking under aerobic conditions. Food Microbiology, 2022, 101, 103893.	4.2	16
3	Protein content of the Oenococcus oeni extracellular vesicles-enriched fraction. Food Microbiology, 2022, 106, 104038.	4.2	1
4	Metschnikowia pulcherrima represses aerobic respiration in Saccharomyces cerevisiae suggesting a direct response to co-cultivation. Food Microbiology, 2021, 94, 103670.	4.2	21
5	Extracellular vesicles in food biotechnology. Microbial Biotechnology, 2021, 14, 8-11.	4.2	5
6	Mechanisms Involved in Interspecific Communication between Wine Yeasts. Foods, 2021, 10, 1734.	4.3	10
7	Biotechnological Approaches to Lowering the Ethanol Yield during Wine Fermentation. Biomolecules, 2021, 11, 1569.	4.0	15
8	Proteomic Characterization of EVs in Non-pathogenic Yeast Cells. Current Topics in Microbiology and Immunology, 2021, 432, 161-170.	1.1	0
9	Autophagy is required for sulfur dioxide tolerance inSaccharomyces cerevisiae. Microbial Biotechnology, 2020, 13, 599-604.	4.2	8
10	Robust label-free CuxCoyOz electrochemical sensors for hexose detection during fermentation process monitoring. Sensors and Actuators B: Chemical, 2020, 304, 127360.	7.8	5
11	Proteomic characterization of extracellular vesicles produced by several wine yeast species. Microbial Biotechnology, 2020, 13, 1581-1596.	4.2	26
12	Impact of Botrytis cinerea Contamination on the Characteristics and Foamability of Yeast Macromolecules Released during the Alcoholic Fermentation of a Model Grape Juice. Molecules, 2020, 25, 472.	3.8	6
13	Genetic Improvement of Wine Yeasts. , 2019, , 315-342.		3
14	Aroma profiling of an aerated fermentation of natural grape must with selected yeast strains at pilot scale. Food Microbiology, 2018, 70, 214-223.	4.2	32
15	Evolution of a Yeast With Industrial Background Under Winemaking Conditions Leads to Diploidization and Chromosomal Copy Number Variation. Frontiers in Microbiology, 2018, 9, 1816.	3.5	21
16	Low Phenotypic Penetrance and Technological Impact of Yeast [GAR+] Prion-Like Elements on Winemaking. Frontiers in Microbiology, 2018, 9, 3311.	3.5	5
17	Hypoxia and iron requirements are the main drivers in transcriptional adaptation of Kluyveromyces lactis during wine aerobic fermentation. International Journal of Food Microbiology, 2017, 246, 40-49.	4.7	2
18	Early transcriptional response to biotic stress in mixed starter fermentations involving Saccharomyces cerevisiae and Torulaspora delbrueckii. International Journal of Food Microbiology, 2017, 241, 60-68.	4.7	63

#	Article	IF	CITATIONS
19	Wine secondary aroma: understanding yeast production of higher alcohols. Microbial Biotechnology, 2017, 10, 1449-1450.	4.2	19
20	Different Non-Saccharomyces Yeast Species Stimulate Nutrient Consumption in S. cerevisiae Mixed Cultures. Frontiers in Microbiology, 2017, 8, 2121.	3.5	62
21	Non-conventional Yeast Species for Lowering Ethanol Content of Wines. Frontiers in Microbiology, 2016, 7, 642.	3.5	163
22	New Genes Involved in Osmotic Stress Tolerance in Saccharomyces cerevisiae. Frontiers in Microbiology, 2016, 7, 1545.	3.5	21
23	Identification of target genes to control acetate yield during aerobic fermentation with Saccharomyces cerevisiae. Microbial Cell Factories, 2016, 15, 156.	4.0	24
24	Genome-wide identification of genes involved in growth and fermentation activity at low temperature in Saccharomyces cerevisiae. International Journal of Food Microbiology, 2016, 236, 38-46.	4.7	15
25	<i>Saccharomyces cerevisiae</i> metabolism in ecological context. FEMS Yeast Research, 2016, 16, fow080.	2.3	37
26	Genetic Improvement and Genetically Modified Microorganisms. , 2016, , 71-96.		3
27	The cellular growth rate controls overall mRNA turnover, and modulates either transcription or degradation rates of particular gene regulons. Nucleic Acids Research, 2016, 44, 3643-3658.	14.5	45
28	Environmental factors influencing the efficacy of different yeast strains for alcohol level reduction in wine by respiration. LWT - Food Science and Technology, 2016, 65, 1038-1043.	5.2	45
29	A Saccharomyces cerevisiae wine yeast strain overproducing mannoproteins selected through classical genetic methods. Oeno One, 2016, 44, 243.	1.4	5
30	Influence of Grape Maturity and Maceration Length on Polysaccharide Composition of Cabernet Sauvignon Red Wines. American Journal of Enology and Viticulture, 2015, 66, 393-397.	1.7	19
31	The impact of oxygen on the final alcohol content of wine fermented by a mixed starter culture. Applied Microbiology and Biotechnology, 2015, 99, 3993-4003.	3.6	125
32	An impaired ubiquitin ligase complex favors initial growth of auxotrophic yeast strains in synthetic grape must. Applied Microbiology and Biotechnology, 2015, 99, 1273-1286.	3.6	12
33	Physiological and genomic characterisation of Saccharomyces cerevisiae hybrids with improved fermentation performance and mannoprotein release capacity. International Journal of Food Microbiology, 2015, 205, 30-40.	4.7	20
34	Use of chemostat cultures mimicking different phases of wine fermentations as a tool for quantitative physiological analysis. Microbial Cell Factories, 2014, 13, 85.	4.0	14
35	New insights into the advantages of ammonium as a winemaking nutrient. International Journal of Food Microbiology, 2014, 177, 128-135.	4.7	20
36	Adaptive evolution of saccharomyces cerevisiae to early stage of an alcoholic fermentation. New Biotechnology, 2014, 31, S71.	4.4	0

#	Article	IF	CITATIONS
37	Improved fermentation kinetics by wine yeast strains evolved under ethanol stress. LWT - Food Science and Technology, 2014, 58, 166-172.	5.2	29
38	Selection of non-Saccharomyces yeast strains for reducing alcohol levels in wine by sugar respiration. International Journal of Food Microbiology, 2014, 181, 85-91.	4.7	172
39	High-Affinity Glucose Transport in Aspergillus nidulans Is Mediated by the Products of Two Related but Differentially Expressed Genes. PLoS ONE, 2014, 9, e94662.	2.5	22
40	Protein Fingerprinting of Staphylococcus aureus by Capillary Electrophoresis with On-Capillary Derivatization and Laser-Induced Fluorescence Detection. Methods in Molecular Biology, 2013, 984, 237-251.	0.9	2
41	Yeast respiration of sugars by non-Saccharomyces yeast species: AÂpromising and barely explored approach to lowering alcohol content ofÂwines. Trends in Food Science and Technology, 2013, 29, 55-61.	15.1	122
42	Metabolic Flux Analysis during the Exponential Growth Phase of Saccharomyces cerevisiae in Wine Fermentations. PLoS ONE, 2013, 8, e71909.	2.5	44
43	Genome-Wide Study of the Adaptation of Saccharomyces cerevisiae to the Early Stages of Wine Fermentation. PLoS ONE, 2013, 8, e74086.	2.5	25
44	Guidelines for the use and interpretation of assays for monitoring autophagy. Autophagy, 2012, 8, 445-544.	9.1	3,122
45	Flocculation and transcriptional adaptation to fermentation conditions in a recombinant wine yeast strain defective for <i>KNR4/SMI1</i> . Biotechnology Progress, 2012, 28, 327-336.	2.6	11
46	A simple method for total quantification of mannoprotein content in real wine samples. Food Chemistry, 2012, 134, 1205-1210.	8.2	22
47	Transcription profiling of sparkling wine second fermentation. International Journal of Food Microbiology, 2012, 153, 176-182.	4.7	39
48	Biomass production and alcoholic fermentation performance of Saccharomyces cerevisiae as a function of nitrogen source. FEMS Yeast Research, 2012, 12, 477-485.	2.3	65
49	Improvement of Wine Yeasts by Genetic Engineering. , 2011, , 169-190.		4
50	Saccharomyces Yeasts II. , 2011, , 33-49.		5
51	Production of Wine Starter Cultures. , 2011, , 279-302.		3
52	Fast and sensitive detection of genetically modified yeasts in wine. Journal of Chromatography A, 2011, 1218, 7550-7556.	3.7	17
53	A new methodology to determine cell wall mannoprotein content and release in wine yeasts. Food Chemistry, 2011, 125, 760-766.	8.2	27
54	A new methodology to obtain wine yeast strains overproducing mannoproteins. International Journal of Food Microbiology, 2010, 139, 9-14.	4.7	22

#	Article	IF	CITATIONS
55	Promotion of multipoint covalent immobilization through different regions of genetically modified penicillin G acylase from E. coli. Process Biochemistry, 2010, 45, 390-398.	3.7	55
56	Protein fingerprinting of Staphylococcus species by capillary electrophoresis with on-capillary derivatization and laser-induced fluorescence detection. Analytica Chimica Acta, 2010, 658, 81-86.	5.4	13
57	Autophagy in food biotechnology. Autophagy, 2009, 5, 925-929.	9.1	8
58	Multilocus sequence typing of oenological Saccharomyces cerevisiae strains. Food Microbiology, 2009, 26, 841-846.	4.2	35
59	Construction of a recombinant autolytic wine yeast strain overexpressing the <i>csclâ€l </i> allele. Biotechnology Progress, 2009, 25, 1598-1604.	2.6	11
60	On-line ultrasonic velocity monitoring of alcoholic fermentation kinetics. Bioprocess and Biosystems Engineering, 2009, 32, 321-331.	3.4	29
61	Three Different Targets for the Genetic Modification of Wine Yeast Strains Resulting in Improved Effectiveness of Bentonite Fining. Journal of Agricultural and Food Chemistry, 2009, 57, 8373-8378.	5.2	23
62	Detection of Clostridium botulinum neurotoxin coding genes: analysis of PCR products by real time versus capillary gel electrophoresis methods. European Food Research and Technology, 2008, 227, 495-502.	3.3	15
63	Chiral analysis of amino acids from conventional and transgenic yeastsâ~†. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2008, 875, 243-247.	2.3	32
64	Evidence for Yeast Autophagy during Simulation of Sparkling Wine Aging: A Reappraisal of the Mechanism of Yeast Autolysis in Wine. Biotechnology Progress, 2008, 21, 614-616.	2.6	44
65	Intrinsically Antibacterial Materials Based on Polymeric Derivatives of Eugenol for Biomedical Applications. Biomacromolecules, 2008, 9, 2530-2535.	5.4	63
66	A Recombinant <i>Saccharomyces cerevisiae</i> Strain Overproducing Mannoproteins Stabilizes Wine against Protein Haze. Applied and Environmental Microbiology, 2008, 74, 5533-5540.	3.1	78
67	Note. Morphological Changes in Saccharomyces cerevisiae during the Second Fermentation of Sparkling Wines. Food Science and Technology International, 2008, 14, 393-398.	2.2	8
68	Guidelines for the use and interpretation of assays for monitoring autophagy in higher eukaryotes. Autophagy, 2008, 4, 151-175.	9.1	2,064
69	Chapter 12 Autophagy in Wine Making. Methods in Enzymology, 2008, 451, 163-175.	1.0	13
70	Characterization of a Second Ornithine Decarboxylase Isolated from Morganella morganii. Journal of Food Protection, 2008, 71, 657-661.	1.7	20
71	Genetic Modification of the Penicillin G Acylase Surface To Improve Its Reversible Immobilization on Ionic Exchangers. Applied and Environmental Microbiology, 2007, 73, 312-319.	3.1	41
72	Improved Stabilization of Genetically Modified Penicillin G Acylase in the Presence of Organic Cosolvents by Co- Immobilization of the Enzyme with Polyethyleneimine. Advanced Synthesis and Catalysis, 2007, 349, 459-464.	4.3	38

#	Article	IF	CITATIONS
73	A simple capillary gel electrophoresis approach for efficient and reproducible DNA separations. Analysis of genetically modified soy and maize. Journal of Separation Science, 2007, 30, 579-585.	2.5	23
74	Autophagy: From basic research to its application in food biotechnology. Biotechnology Advances, 2007, 25, 396-409.	11.7	13
75	Transgenic wine yeast technology comes of age: is it time for transgenic wine?. Biotechnology Letters, 2007, 29, 191-200.	2.2	51
76	Isolation and Characterization of a Thermally Extracted Yeast Cell Wall Fraction Potentially Useful for Improving the Foaming Properties of Sparkling Wines. Journal of Agricultural and Food Chemistry, 2006, 54, 7898-7903.	5.2	78
77	Genetic Determinants of the Release of Mannoproteins of Enological Interest bySaccharomyces cerevisiae. Journal of Agricultural and Food Chemistry, 2006, 54, 9411-9416.	5.2	42
78	Combining microsatellite markers and capillary gel electrophoresis with laser-induced fluorescence to identify the grape (Vitis vinifera) variety of musts. European Food Research and Technology, 2006, 223, 625-631.	3.3	27
79	Deletion of BCY1 from the Saccharomyces cerevisiae Genome Is Semidominant and Induces Autolytic Phenotypes Suitable for Improvement of Sparkling Wines. Applied and Environmental Microbiology, 2006, 72, 2351-2358.	3.1	45
80	Induction of Autophagy by Second-Fermentation Yeasts during Elaboration of Sparkling Wines. Applied and Environmental Microbiology, 2006, 72, 4121-4127.	3.1	66
81	Overexpression ofcsc1-1. A plausible strategy to obtain wine yeast strains undergoing accelerated autolysis. FEMS Microbiology Letters, 2005, 246, 1-9.	1.8	22
82	Probing the determinants of substrate specificity of a feruloyl esterase, AnFaeA, from Aspergillus niger. FEBS Journal, 2005, 272, 4362-4371.	4.7	59
83	Combining Peptide Modeling and Capillary Electrophoresisâ^'Mass Spectrometry for Characterization of Enzymes Cleavage Patterns:Â Recombinant versus Natural Bovine Pepsin A. Analytical Chemistry, 2005, 77, 7709-7716.	6.5	33
84	Effect of Accelerated Autolysis of Yeast on the Composition and Foaming Properties of Sparkling Wines Elaborated by a Champenoise Method. Journal of Agricultural and Food Chemistry, 2005, 53, 7232-7237.	5.2	93
85	Stabilization of Penicillin G Acylase from Escherichia coli : Site-Directed Mutagenesis of the Protein Surface To Increase Multipoint Covalent Attachment. Applied and Environmental Microbiology, 2004, 70, 1249-1251.	3.1	111
86	Cloning of the Authentic Bovine Gene Encoding Pepsinogen A and Its Expression in Microbial Cells. Applied and Environmental Microbiology, 2004, 70, 2588-2595.	3.1	14
87	Comparison of Two Alternative Dominant Selectable Markers for Wine Yeast Transformation. Applied and Environmental Microbiology, 2004, 70, 7018-7023.	3.1	23
88	Chromatin Rearrangements in the prnD-prnB Bidirectional Promoter: Dependence on Transcription Factors. Eukaryotic Cell, 2004, 3, 144-156.	3.4	38
89	Morphological Changes in Autolytic Wine Yeast during Aging in Two Model Systems. Journal of Food Science, 2004, 69, M233.	3.1	22
90	Sensitive and simultaneous analysis of five transgenic maizes using multiplex polymerase chain reaction, capillary gel electrophoresis, and laser-induced fluorescence. Electrophoresis, 2004, 25, 2219-2226.	2.4	61

#	Article	IF	CITATIONS
91	The combined use of molecular techniques and capillary electrophoresis in food analysis. TrAC - Trends in Analytical Chemistry, 2004, 23, 637-643.	11.4	44
92	Simultaneous and Sensitive Detection of Three Foodborne Pathogens by Multiplex PCR, Capillary Gel Electrophoresis, and Laser-Induced Fluorescence. Journal of Agricultural and Food Chemistry, 2004, 52, 7180-7186.	5.2	58
93	Detection and Differentiation of Several Food-Spoilage Lactic Acid Bacteria by Multiplex Polymerase Chain Reaction, Capillary Gel Electrophoresis, and Laser-Induced Fluorescence. Journal of Agricultural and Food Chemistry, 2004, 52, 5583-5587.	5.2	17
94	Detection of Genetically Modified Organisms in Foods by DNA Amplification Techniques. Critical Reviews in Food Science and Nutrition, 2004, 44, 425-436.	10.3	61
95	Quantitation of Transgenic Bt Event-176 Maize Using Double Quantitative Competitive Polymerase Chain Reaction and Capillary Gel Electrophorsesis Laser-Induced Fluorescence. Analytical Chemistry, 2004, 76, 2306-2313.	6.5	54
96	The Crystal Structure of Feruloyl Esterase A from Aspergillus niger Suggests Evolutive Functional Convergence in Feruloyl Esterase Family. Journal of Molecular Biology, 2004, 338, 495-506.	4.2	110
97	Yeast autolytic mutants potentially useful for sparkling wine production. International Journal of Food Microbiology, 2003, 84, 21-26.	4.7	45
98	Ultrasensitive Detection of Genetically Modified Maize DNA by Capillary Gel Electrophoresis with Laser-Induced Fluorescence Using Different Fluorescent Intercalating Dyes. Journal of Agricultural and Food Chemistry, 2002, 50, 4497-4502.	5.2	63
99	Detection of Genetically Modified Maize by the Polymerase Chain Reaction and Capillary Gel Electrophoresis with UV Detection and Laser-Induced Fluorescence. Journal of Agricultural and Food Chemistry, 2002, 50, 1016-1021.	5.2	66
100	Highly reproducible capillary gel electrophoresis (CGE) of DNA fragments using uncoated columns. Detection of genetically modified maize by PCR-cGE. Journal of Separation Science, 2002, 25, 577-583.	2.5	38
101	Deletion of the unique gene encoding a typical histone H1 has no apparent phenotype in Aspergillus nidulans. Molecular Microbiology, 2000, 35, 223-233.	2.5	73
102	The GATA factor AreA is essential for chromatin remodelling in a eukaryotic bidirectional promoter. EMBO Journal, 1999, 18, 1584-1597.	7.8	132
103	A Rapid Method for Chromatin Structure Analysis in the Filamentous Fungus Aspergillus Nidulans. Nucleic Acids Research, 1997, 25, 3955-3956.	14.5	33
104	The integration of nitrogen and carbon catabolite repression in Aspergillus nidulans requires the GATA factor AreA and an additional positive-acting element, ADA. EMBO Journal, 1997, 16, 2937-2944.	7.8	37
105	The bgl1 gene of Trichoderma reesei QM 9414 encodes an extracellular, cellulose-inducible ?-glucosidase involved in cellulase induction by sophorose. Molecular Microbiology, 1995, 16, 687-697.	2.5	97
106	Cloning, sequence analysis and yeast expression of the egl1 gene from Trichoderma longibrachiatum. Applied Microbiology and Biotechnology, 1992, 38, 370-5.	3.6	37
107	The Two Major Xylanases from Trichoderma Reesei: Characterization of Both Enzymes and Genes. Nature Biotechnology, 1992, 10, 1461-1465.	17.5	182
108	Two beta-glycanase genes are clustered in Bacillus polymyxa: molecular cloning, expression, and sequence analysis of genes encoding a xylanase and an endo-beta-(1,3)-(1,4)-glucanase. Journal of Bacteriology, 1991, 173, 7705-7710.	2.2	122