Ramon Gonzalez

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1143295/publications.pdf

Version: 2024-02-01

108 papers 9,349 citations

38 h-index 95 g-index

111 all docs

111 docs citations

111 times ranked 15480 citing authors

#	Article	IF	Citations
1	Guidelines for the use and interpretation of assays for monitoring autophagy. Autophagy, 2012, 8, 445-544.	9.1	3,122
2	Guidelines for the use and interpretation of assays for monitoring autophagy in higher eukaryotes. Autophagy, 2008, 4, 151-175.	9.1	2,064
3	The Two Major Xylanases from Trichoderma Reesei: Characterization of Both Enzymes and Genes. Nature Biotechnology, 1992, 10, 1461-1465.	17.5	182
4	Selection of non-Saccharomyces yeast strains for reducing alcohol levels in wine by sugar respiration. International Journal of Food Microbiology, 2014, 181, 85-91.	4.7	172
5	Non-conventional Yeast Species for Lowering Ethanol Content of Wines. Frontiers in Microbiology, 2016, 7, 642.	3 . 5	163
6	The GATA factor AreA is essential for chromatin remodelling in a eukaryotic bidirectional promoter. EMBO Journal, 1999, 18, 1584-1597.	7.8	132
7	The impact of oxygen on the final alcohol content of wine fermented by a mixed starter culture. Applied Microbiology and Biotechnology, 2015, 99, 3993-4003.	3.6	125
8	Two beta-glycanase genes are clustered in Bacillus polymyxa: molecular cloning, expression, and sequence analysis of genes encoding a xylanase and an endo-beta-(1,3)-(1,4)-glucanase. Journal of Bacteriology, 1991, 173, 7705-7710.	2.2	122
9	Yeast respiration of sugars by non-Saccharomyces yeast species: AÂpromising and barely explored approach to lowering alcohol content ofÂwines. Trends in Food Science and Technology, 2013, 29, 55-61.	15.1	122
10	Stabilization of Penicillin G Acylase from Escherichia coli: Site-Directed Mutagenesis of the Protein Surface To Increase Multipoint Covalent Attachment. Applied and Environmental Microbiology, 2004, 70, 1249-1251.	3.1	111
11	The Crystal Structure of Feruloyl Esterase A from Aspergillus niger Suggests Evolutive Functional Convergence in Feruloyl Esterase Family. Journal of Molecular Biology, 2004, 338, 495-506.	4.2	110
12	The bgl1 gene of Trichoderma reesei QM 9414 encodes an extracellular, cellulose-inducible ?-glucosidase involved in cellulase induction by sophorose. Molecular Microbiology, 1995, 16, 687-697.	2.5	97
13	Effect of Accelerated Autolysis of Yeast on the Composition and Foaming Properties of Sparkling Wines Elaborated by a Champenoise Method. Journal of Agricultural and Food Chemistry, 2005, 53, 7232-7237.	5.2	93
14	Isolation and Characterization of a Thermally Extracted Yeast Cell Wall Fraction Potentially Useful for Improving the Foaming Properties of Sparkling Wines. Journal of Agricultural and Food Chemistry, 2006, 54, 7898-7903.	5. 2	78
15	A Recombinant <i>Saccharomyces cerevisiae</i> Strain Overproducing Mannoproteins Stabilizes Wine against Protein Haze. Applied and Environmental Microbiology, 2008, 74, 5533-5540.	3.1	78
16	Deletion of the unique gene encoding a typical histone H1 has no apparent phenotype in Aspergillus nidulans. Molecular Microbiology, 2000, 35, 223-233.	2.5	73
17	Detection of Genetically Modified Maize by the Polymerase Chain Reaction and Capillary Gel Electrophoresis with UV Detection and Laser-Induced Fluorescence. Journal of Agricultural and Food Chemistry, 2002, 50, 1016-1021.	5. 2	66
18	Induction of Autophagy by Second-Fermentation Yeasts during Elaboration of Sparkling Wines. Applied and Environmental Microbiology, 2006, 72, 4121-4127.	3.1	66

#	Article	IF	Citations
19	Biomass production and alcoholic fermentation performance of Saccharomyces cerevisiae as a function of nitrogen source. FEMS Yeast Research, 2012, 12, 477-485.	2.3	65
20	Ultrasensitive Detection of Genetically Modified Maize DNA by Capillary Gel Electrophoresis with Laser-Induced Fluorescence Using Different Fluorescent Intercalating Dyes. Journal of Agricultural and Food Chemistry, 2002, 50, 4497-4502.	5.2	63
21	Intrinsically Antibacterial Materials Based on Polymeric Derivatives of Eugenol for Biomedical Applications. Biomacromolecules, 2008, 9, 2530-2535.	5.4	63
22	Early transcriptional response to biotic stress in mixed starter fermentations involving Saccharomyces cerevisiae and Torulaspora delbrueckii. International Journal of Food Microbiology, 2017, 241, 60-68.	4.7	63
23	Different Non-Saccharomyces Yeast Species Stimulate Nutrient Consumption in S. cerevisiae Mixed Cultures. Frontiers in Microbiology, 2017, 8, 2121.	3.5	62
24	Sensitive and simultaneous analysis of five transgenic maizes using multiplex polymerase chain reaction, capillary gel electrophoresis, and laser-induced fluorescence. Electrophoresis, 2004, 25, 2219-2226.	2.4	61
25	Detection of Genetically Modified Organisms in Foods by DNA Amplification Techniques. Critical Reviews in Food Science and Nutrition, 2004, 44, 425-436.	10.3	61
26	Probing the determinants of substrate specificity of a feruloyl esterase, AnFaeA, from Aspergillus niger. FEBS Journal, 2005, 272, 4362-4371.	4.7	59
27	Simultaneous and Sensitive Detection of Three Foodborne Pathogens by Multiplex PCR, Capillary Gel Electrophoresis, and Laser-Induced Fluorescence. Journal of Agricultural and Food Chemistry, 2004, 52, 7180-7186.	5.2	58
28	Promotion of multipoint covalent immobilization through different regions of genetically modified penicillin G acylase from E. coli. Process Biochemistry, 2010, 45, 390-398.	3.7	55
29	Quantitation of Transgenic Bt Event-176 Maize Using Double Quantitative Competitive Polymerase Chain Reaction and Capillary Gel Electrophorsesis Laser-Induced Fluorescence. Analytical Chemistry, 2004, 76, 2306-2313.	6. 5	54
30	Transgenic wine yeast technology comes of age: is it time for transgenic wine?. Biotechnology Letters, 2007, 29, 191-200.	2.2	51
31	Yeast autolytic mutants potentially useful for sparkling wine production. International Journal of Food Microbiology, 2003, 84, 21-26.	4.7	45
32	Deletion of BCY1 from the Saccharomyces cerevisiae Genome Is Semidominant and Induces Autolytic Phenotypes Suitable for Improvement of Sparkling Wines. Applied and Environmental Microbiology, 2006, 72, 2351-2358.	3.1	45
33	The cellular growth rate controls overall mRNA turnover, and modulates either transcription or degradation rates of particular gene regulons. Nucleic Acids Research, 2016, 44, 3643-3658.	14.5	45
34	Environmental factors influencing the efficacy of different yeast strains for alcohol level reduction in wine by respiration. LWT - Food Science and Technology, 2016, 65, 1038-1043.	5 . 2	45
35	The combined use of molecular techniques and capillary electrophoresis in food analysis. TrAC - Trends in Analytical Chemistry, 2004, 23, 637-643.	11.4	44
36	Evidence for Yeast Autophagy during Simulation of Sparkling Wine Aging: A Reappraisal of the Mechanism of Yeast Autolysis in Wine. Biotechnology Progress, 2008, 21, 614-616.	2.6	44

#	Article	IF	CITATIONS
37	Metabolic Flux Analysis during the Exponential Growth Phase of Saccharomyces cerevisiae in Wine Fermentations. PLoS ONE, 2013, 8, e71909.	2.5	44
38	Genetic Determinants of the Release of Mannoproteins of Enological Interest by Saccharomyces cerevisiae. Journal of Agricultural and Food Chemistry, 2006, 54, 9411-9416.	5.2	42
39	Genetic Modification of the Penicillin G Acylase Surface To Improve Its Reversible Immobilization on Ionic Exchangers. Applied and Environmental Microbiology, 2007, 73, 312-319.	3.1	41
40	Transcription profiling of sparkling wine second fermentation. International Journal of Food Microbiology, 2012, 153, 176-182.	4.7	39
41	Highly reproducible capillary gel electrophoresis (CGE) of DNA fragments using uncoated columns. Detection of genetically modified maize by PCR-cGE. Journal of Separation Science, 2002, 25, 577-583.	2.5	38
42	Chromatin Rearrangements in the prnD-prnB Bidirectional Promoter: Dependence on Transcription Factors. Eukaryotic Cell, 2004, 3, 144-156.	3.4	38
43	Improved Stabilization of Genetically Modified Penicillin G Acylase in the Presence of Organic Cosolvents by Co- Immobilization of the Enzyme with Polyethyleneimine. Advanced Synthesis and Catalysis, 2007, 349, 459-464.	4.3	38
44	Cloning, sequence analysis and yeast expression of the egl1 gene from Trichoderma longibrachiatum. Applied Microbiology and Biotechnology, 1992, 38, 370-5.	3.6	37
45	The integration of nitrogen and carbon catabolite repression in Aspergillus nidulans requires the GATA factor AreA and an additional positive-acting element, ADA. EMBO Journal, 1997, 16, 2937-2944.	7.8	37
46	<i>Saccharomyces cerevisiae</i> metabolism in ecological context. FEMS Yeast Research, 2016, 16, fow080.	2.3	37
47	Multilocus sequence typing of oenological Saccharomyces cerevisiae strains. Food Microbiology, 2009, 26, 841-846.	4.2	35
48	A Rapid Method for Chromatin Structure Analysis in the Filamentous Fungus Aspergillus Nidulans. Nucleic Acids Research, 1997, 25, 3955-3956.	14.5	33
49	Combining Peptide Modeling and Capillary Electrophoresisâ^'Mass Spectrometry for Characterization of Enzymes Cleavage Patterns:Â Recombinant versus Natural Bovine Pepsin A. Analytical Chemistry, 2005, 77, 7709-7716.	6.5	33
50	Chiral analysis of amino acids from conventional and transgenic yeastsa~†. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2008, 875, 243-247.	2.3	32
51	Aroma profiling of an aerated fermentation of natural grape must with selected yeast strains at pilot scale. Food Microbiology, 2018, 70, 214-223.	4.2	32
52	On-line ultrasonic velocity monitoring of alcoholic fermentation kinetics. Bioprocess and Biosystems Engineering, 2009, 32, 321-331.	3.4	29
53	Improved fermentation kinetics by wine yeast strains evolved under ethanol stress. LWT - Food Science and Technology, 2014, 58, 166-172.	5.2	29
54	Combining microsatellite markers and capillary gel electrophoresis with laser-induced fluorescence to identify the grape (Vitis vinifera) variety of musts. European Food Research and Technology, 2006, 223, 625-631.	3.3	27

#	Article	IF	CITATIONS
55	A new methodology to determine cell wall mannoprotein content and release in wine yeasts. Food Chemistry, 2011, 125, 760-766.	8.2	27
56	Proteomic characterization of extracellular vesicles produced by several wine yeast species. Microbial Biotechnology, 2020, 13, 1581-1596.	4.2	26
57	Truth in wine yeast. Microbial Biotechnology, 2022, 15, 1339-1356.	4.2	26
58	Genome-Wide Study of the Adaptation of Saccharomyces cerevisiae to the Early Stages of Wine Fermentation. PLoS ONE, 2013, 8, e74086.	2.5	25
59	Identification of target genes to control acetate yield during aerobic fermentation with Saccharomyces cerevisiae. Microbial Cell Factories, 2016, 15, 156.	4.0	24
60	Comparison of Two Alternative Dominant Selectable Markers for Wine Yeast Transformation. Applied and Environmental Microbiology, 2004, 70, 7018-7023.	3.1	23
61	A simple capillary gel electrophoresis approach for efficient and reproducible DNA separations. Analysis of genetically modified soy and maize. Journal of Separation Science, 2007, 30, 579-585.	2.5	23
62	Three Different Targets for the Genetic Modification of Wine Yeast Strains Resulting in Improved Effectiveness of Bentonite Fining. Journal of Agricultural and Food Chemistry, 2009, 57, 8373-8378.	5.2	23
63	Morphological Changes in Autolytic Wine Yeast during Aging in Two Model Systems. Journal of Food Science, 2004, 69, M233.	3.1	22
64	Overexpression ofcsc1-1. A plausible strategy to obtain wine yeast strains undergoing accelerated autolysis. FEMS Microbiology Letters, 2005, 246, 1-9.	1.8	22
65	A new methodology to obtain wine yeast strains overproducing mannoproteins. International Journal of Food Microbiology, 2010, 139, 9-14.	4.7	22
66	A simple method for total quantification of mannoprotein content in real wine samples. Food Chemistry, 2012, 134, 1205-1210.	8.2	22
67	High-Affinity Glucose Transport in Aspergillus nidulans Is Mediated by the Products of Two Related but Differentially Expressed Genes. PLoS ONE, 2014, 9, e94662.	2.5	22
68	New Genes Involved in Osmotic Stress Tolerance in Saccharomyces cerevisiae. Frontiers in Microbiology, 2016, 7, 1545.	3.5	21
69	Evolution of a Yeast With Industrial Background Under Winemaking Conditions Leads to Diploidization and Chromosomal Copy Number Variation. Frontiers in Microbiology, 2018, 9, 1816.	3.5	21
70	Metschnikowia pulcherrima represses aerobic respiration in Saccharomyces cerevisiae suggesting a direct response to co-cultivation. Food Microbiology, 2021, 94, 103670.	4.2	21
71	Characterization of a Second Ornithine Decarboxylase Isolated from Morganella morganii. Journal of Food Protection, 2008, 71, 657-661.	1.7	20
72	New insights into the advantages of ammonium as a winemaking nutrient. International Journal of Food Microbiology, 2014, 177, 128-135.	4.7	20

#	Article	IF	Citations
73	Physiological and genomic characterisation of Saccharomyces cerevisiae hybrids with improved fermentation performance and mannoprotein release capacity. International Journal of Food Microbiology, 2015, 205, 30-40.	4.7	20
74	Influence of Grape Maturity and Maceration Length on Polysaccharide Composition of Cabernet Sauvignon Red Wines. American Journal of Enology and Viticulture, 2015, 66, 393-397.	1.7	19
75	Wine secondary aroma: understanding yeast production of higher alcohols. Microbial Biotechnology, 2017, 10, 1449-1450.	4.2	19
76	Detection and Differentiation of Several Food-Spoilage Lactic Acid Bacteria by Multiplex Polymerase Chain Reaction, Capillary Gel Electrophoresis, and Laser-Induced Fluorescence. Journal of Agricultural and Food Chemistry, 2004, 52, 5583-5587.	5 . 2	17
77	Fast and sensitive detection of genetically modified yeasts in wine. Journal of Chromatography A, 2011, 1218, 7550-7556.	3.7	17
78	Exploring the suitability of Saccharomyces cerevisiae strains for winemaking under aerobic conditions. Food Microbiology, 2022, 101, 103893.	4.2	16
79	Detection of Clostridium botulinum neurotoxin coding genes: analysis of PCR products by real time versus capillary gel electrophoresis methods. European Food Research and Technology, 2008, 227, 495-502.	3.3	15
80	Genome-wide identification of genes involved in growth and fermentation activity at low temperature in Saccharomyces cerevisiae. International Journal of Food Microbiology, 2016, 236, 38-46.	4.7	15
81	Biotechnological Approaches to Lowering the Ethanol Yield during Wine Fermentation. Biomolecules, 2021, 11, 1569.	4.0	15
82	Cloning of the Authentic Bovine Gene Encoding Pepsinogen A and Its Expression in Microbial Cells. Applied and Environmental Microbiology, 2004, 70, 2588-2595.	3.1	14
83	Use of chemostat cultures mimicking different phases of wine fermentations as a tool for quantitative physiological analysis. Microbial Cell Factories, 2014, 13, 85.	4.0	14
84	Autophagy: From basic research to its application in food biotechnology. Biotechnology Advances, 2007, 25, 396-409.	11.7	13
85	Chapter 12 Autophagy in Wine Making. Methods in Enzymology, 2008, 451, 163-175.	1.0	13
86	Protein fingerprinting of Staphylococcus species by capillary electrophoresis with on-capillary derivatization and laser-induced fluorescence detection. Analytica Chimica Acta, 2010, 658, 81-86.	5.4	13
87	An impaired ubiquitin ligase complex favors initial growth of auxotrophic yeast strains in synthetic grape must. Applied Microbiology and Biotechnology, 2015, 99, 1273-1286.	3.6	12
88	Construction of a recombinant autolytic wine yeast strain overexpressing the ⟨i⟩csc1â€1⟨ i⟩ allele. Biotechnology Progress, 2009, 25, 1598-1604.	2.6	11
89	Flocculation and transcriptional adaptation to fermentation conditions in a recombinant wine yeast strain defective for <i>KNR4/SMI1</i> . Biotechnology Progress, 2012, 28, 327-336.	2.6	11
90	Mechanisms Involved in Interspecific Communication between Wine Yeasts. Foods, 2021, 10, 1734.	4.3	10

#	Article	IF	Citations
91	Note. Morphological Changes in Saccharomyces cerevisiae during the Second Fermentation of Sparkling Wines. Food Science and Technology International, 2008, 14, 393-398.	2.2	8
92	Autophagy in food biotechnology. Autophagy, 2009, 5, 925-929.	9.1	8
93	Autophagy is required for sulfur dioxide tolerance inSaccharomyces cerevisiae. Microbial Biotechnology, 2020, 13, 599-604.	4.2	8
94	Impact of Botrytis cinerea Contamination on the Characteristics and Foamability of Yeast Macromolecules Released during the Alcoholic Fermentation of a Model Grape Juice. Molecules, 2020, 25, 472.	3.8	6
95	Saccharomyces Yeasts II., 2011, , 33-49.		5
96	Low Phenotypic Penetrance and Technological Impact of Yeast [GAR+] Prion-Like Elements on Winemaking. Frontiers in Microbiology, 2018, 9, 3311.	3.5	5
97	Robust label-free CuxCoyOz electrochemical sensors for hexose detection during fermentation process monitoring. Sensors and Actuators B: Chemical, 2020, 304, 127360.	7.8	5
98	Extracellular vesicles in food biotechnology. Microbial Biotechnology, 2021, 14, 8-11.	4.2	5
99	A Saccharomyces cerevisiae wine yeast strain overproducing mannoproteins selected through classical genetic methods. Oeno One, 2016, 44, 243.	1.4	5
100	Improvement of Wine Yeasts by Genetic Engineering. , 2011, , 169-190.		4
101	Production of Wine Starter Cultures. , 2011, , 279-302.		3
102	Genetic Improvement and Genetically Modified Microorganisms. , 2016, , 71-96.		3
103	Genetic Improvement of Wine Yeasts. , 2019, , 315-342.		3
104	Protein Fingerprinting of Staphylococcus aureus by Capillary Electrophoresis with On-Capillary Derivatization and Laser-Induced Fluorescence Detection. Methods in Molecular Biology, 2013, 984, 237-251.	0.9	2
105	Hypoxia and iron requirements are the main drivers in transcriptional adaptation of Kluyveromyces lactis during wine aerobic fermentation. International Journal of Food Microbiology, 2017, 246, 40-49.	4.7	2
106	Protein content of the Oenococcus oeni extracellular vesicles-enriched fraction. Food Microbiology, 2022, 106, 104038.	4.2	1
107	Adaptive evolution of saccharomyces cerevisiae to early stage of an alcoholic fermentation. New Biotechnology, 2014, 31, S71.	4.4	0
108	Proteomic Characterization of EVs in Non-pathogenic Yeast Cells. Current Topics in Microbiology and Immunology, 2021, 432, 161-170.	1.1	0