
Theodoros D Katsaounis

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1143110/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A regularized shallow-water waves system with slip-wall boundary conditions in a basin: theory and numerical analysis. Nonlinearity, 2022, 35, 750-786.	1.4	4
2	Boussinesq-Peregrine water wave models and their numerical approximation. Journal of Computational Physics, 2020, 417, 109579.	3.8	4
3	Performance assessment of bifacial c-Si PV modules through device simulations and outdoor measurements. Renewable Energy, 2019, 143, 1285-1298.	8.9	35
4	Localization in Adiabatic Shear Flow Via Geometric Theory of Singular Perturbations. Journal of Nonlinear Science, 2019, 29, 2055-2101.	2.1	2
5	On the reflection of solitons of the cubic nonlinear Schrödinger equation. Mathematical Methods in the Applied Sciences, 2018, 41, 1013-1018.	2.3	6
6	A Posteriori Error Analysis for Evolution Nonlinear Schrödinger Equations up to the Critical Exponent. SIAM Journal on Numerical Analysis, 2018, 56, 1405-1434.	2.3	5
7	2D simulation and performance evaluation of bifacial rear local contact c-Si solar cells under variable illumination conditions. Solar Energy, 2017, 158, 34-41.	6.1	6
8	Emergence of Coherent Localized Structures in Shear Deformations of Temperature Dependent Fluids. Archive for Rational Mechanics and Analysis, 2017, 224, 173-208.	2.4	3
9	Localization in inelastic rate dependent shearing deformations. Journal of the Mechanics and Physics of Solids, 2017, 98, 106-125.	4.8	4
10	Regularized semiclassical limits: Linear flows with infinite Lyapunov exponents. Communications in Mathematical Sciences, 2016, 14, 1821-1858.	1.0	2
11	A posteriori error control and adaptivity for Crank–Nicolson finite element approximations for the linear Schrödinger equation. Numerische Mathematik, 2015, 129, 55-90.	1.9	7
12	On the Performance of the WRF Numerical Model over Complex Terrain on a High Performance Computing Cluster. , 2014, , .		2
13	Finite volume methods for unidirectional dispersive wave models. International Journal for Numerical Methods in Fluids, 2013, 71, 717-736.	1.6	33
14	Three-points interfacial quadrature for geometrical source terms on nonuniform grids. Calcolo, 2012, 49, 149-176.	1.1	1
15	Finite volume schemes for dispersive wave propagation and runup. Journal of Computational Physics, 2011, 230, 3035-3061.	3.8	71
16	Localization and Shear Bands in High Strain-Rate Plasticity. The IMA Volumes in Mathematics and Its Applications, 2011, , 365-377.	0.5	1
17	Dispersive wave runup on non-uniform shores. Springer Proceedings in Mathematics, 2011, , 389-397.	0.5	6
18	ADAPTIVE FINITE ELEMENT COMPUTATIONS OF SHEAR BAND FORMATION. Mathematical Models and Methods in Applied Sciences, 2010, 20, 423-448.	3.3	6

THEODOROS D KATSAOUNIS

#	Article	IF	CITATIONS
19	Effective Equations for Localization and Shear Band Formation. SIAM Journal on Applied Mathematics, 2009, 69, 1618-1643.	1.8	7
20	Scaling of the size and temporal occurrence of burst sequences in creep rupture of fiber bundles. European Physical Journal B, 2008, 61, 153-157.	1.5	5
21	Burst avalanches and inter-occurrence times in creep rupture. Europhysics Letters, 2008, 81, 24001.	2.0	2
22	Load capacity and rupture displacement in viscoelastic fiber bundles. Physical Review E, 2007, 75, 046104.	2.1	12
23	Numerical simulation of incompressible fluid flow using locally solenoidal elements. Computers and Mathematics With Applications, 2006, 51, 1551-1570.	2.7	9
24	Numerical solution of the two-dimensional shallow water equations by the application of relaxation methods. Applied Mathematical Modelling, 2005, 29, 754-783.	4.2	45
25	A Generalized Relaxation Method for Transport and Diffusion of Pollutant Models in Shallow Water. Computational Methods in Applied Mathematics, 2004, 4, 410-430.	0.8	11
26	Upwinding sources at interfaces in conservation laws. Applied Mathematics Letters, 2004, 17, 309-316.	2.7	14
27	First and second order error estimates for the Upwind Source at Interface method. Mathematics of Computation, 2004, 74, 103-123.	2.1	4
28	Relaxation schemes for the shallow water equations. International Journal for Numerical Methods in Fluids, 2003, 41, 695-719.	1.6	40
29	High frequency waves near cusp caustics. Quarterly of Applied Mathematics, 2003, 61, 111-129.	0.7	1
30	Relaxation Models and Finite Element Schemes for the Shallow Water Equations. , 2003, , 621-631.		3
31	Second Order Approximation of the Viscous Saint-Venant System and Comparison with Experiments. , 2003, , 633-644.		5
32	High Frequency limit of the Helmholtz Equations. Revista Matematica Iberoamericana, 2002, 18, 187-209.	0.9	38
33	COMPUTATION OF HIGH FREQUENCY FIELDS NEAR CAUSTICS. Mathematical Models and Methods in Applied Sciences, 2001, 11, 199-228.	3.3	7
34	Adaptive Finite Element Relaxation Schemes for Hyperbolic Conservation Laws. ESAIM: Mathematical Modelling and Numerical Analysis, 2001, 35, 17-33.	1.9	19
35	Finite volume relaxation schemes for multidimensional conservation laws. Mathematics of Computation, 2000, 70, 533-554.	2.1	9
36	A Discontinuous Galerkin Method for the Incompressible Navier-Stokes Equations. Lecture Notes in Computational Science and Engineering, 2000, , 157-166.	0.3	10

#	Article	IF	CITATIONS
37	A modified structured central scheme for 2D hyperbolic conservation laws. Applied Mathematics Letters, 1999, 12, 89-96.	2.7	48