Raymond Evers

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11428872/publications.pdf

Version: 2024-02-01

55 papers 9,327 citations

36 h-index 54 g-index

58 all docs 58 docs citations

58 times ranked 8115 citing authors

#	Article	IF	CITATIONS
1	Assessment of Pharmacokinetic Interaction Between Gefapixant (MKâ€7264), a P2X3 Receptor Antagonist, and the OATP1B1 Drug Transporter Substrate Pitavastatin. Clinical Pharmacology in Drug Development, 2022, 11, 406-412.	0.8	6
2	Regulation of Drug Transport Proteinsâ€"From Mechanisms to Clinical Impact: A White Paper on Behalf of the International Transporter Consortium. Clinical Pharmacology and Therapeutics, 2022, 112, 461-484.	2.3	26
3	A Microdose Cocktail to Evaluate Drug Interactions in Patients with Renal Impairment. Clinical Pharmacology and Therapeutics, 2021, 109, 403-415.	2.3	31
4	Protein drug-drug interactions for therapeutic modalities. , 2020, , 387-416.		1
5	A Two-Tiered In Vitro Approach to De-Risk Drug Candidates for Potential Bile Salt Export Pump Inhibition Liabilities in Drug Discovery. Drug Metabolism and Disposition, 2020, 48, 1147-1160.	1.7	12
6	Application of a Rat Liver Drug Bioactivation Transcriptional Response Assay Early in Drug Development That Informs Chemically Reactive Metabolite Formation and Potential for Drug-induced Liver Injury. Toxicological Sciences, 2020, 177, 281-299.	1.4	27
7	Interindividual and Regional Variability in Drug Transporter Abundance at the Human Blood–Brain Barrier Measured by Quantitative Targeted Proteomics. Clinical Pharmacology and Therapeutics, 2019, 106, 228-237.	2.3	64
8	Use of a Bile Salt Export Pump Knockdown Rat Susceptibility Model to Interrogate Mechanism of Drug-Induced Liver Toxicity. Toxicological Sciences, 2019, 170, 180-198.	1.4	7
9	Transporter Expression in Noncancerous and Cancerous Liver Tissue from Donors with Hepatocellular Carcinoma and Chronic Hepatitis C Infection Quantified by LC-MS/MS Proteomics. Drug Metabolism and Disposition, 2018, 46, 189-196.	1.7	43
10	Transporter expression in non-cancerous and cancerous liver tissue from subjects with hepatocellular carcinoma and chronic hepatitis C infection quantified by LC-MS/MS proteomics. Drug Metabolism and Pharmacokinetics, 2018, 33, S18-S19.	1.1	О
11	Diseaseâ€Associated Changes in Drug Transporters May Impact the Pharmacokinetics and/or Toxicity of Drugs: A White Paper From the International Transporter Consortium. Clinical Pharmacology and Therapeutics, 2018, 104, 900-915.	2.3	91
12	Identification of Endogenous Biomarkers to Predict the Propensity of Drug Candidates to Cause Hepatic or Renal Transporter-Mediated Drug-Drug Interactions. Journal of Pharmaceutical Sciences, 2017, 106, 2357-2367.	1.6	59
13	Antibiotic-induced Elevations of Plasma Bile Acids in Rats Independent of Bsep Inhibition. Toxicological Sciences, 2017, 157, kfx015.	1.4	13
14	Assessment of drug metabolism enzyme and transporter pharmacogenetics in drug discovery and early development: perspectives of the I-PWG. Pharmacogenomics, 2016, 17, 615-631.	0.6	4
15	The Complexities of Interpreting Reversible Elevated Serum Creatinine Levels in Drug Development: Does a Correlation with Inhibition of Renal Transporters Exist?. Drug Metabolism and Disposition, 2016, 44, 1498-1509.	1.7	82
16	Transporter Expression in Liver Tissue from Subjects with Alcoholic or Hepatitis C Cirrhosis Quantified by Targeted Quantitative Proteomics. Drug Metabolism and Disposition, 2016, 44, 1752-1758.	1.7	100
17	Quantitative Transporter Proteomics by Liquid Chromatography with Tandem Mass Spectrometry: Addressing Methodologic Issues of Plasma Membrane Isolation and Expression-Activity Relationship. Drug Metabolism and Disposition, 2015, 43, 284-288.	1.7	44
18	Establishment of a Hepatocyte-Kupffer Cell Coculture Model for Assessment of Proinflammatory Cytokine Effects on Metabolizing Enzymes and Drug Transporters. Drug Metabolism and Disposition, 2015, 43, 774-785.	1.7	113

#	Article	IF	CITATIONS
19	Evaluation of Cynomolgus Monkeys for the Identification of Endogenous Biomarkers for Hepatic Transporter Inhibition and as a Translatable Model to Predict Pharmacokinetic Interactions with Statins in Humans. Drug Metabolism and Disposition, 2015, 43, 851-863.	1.7	55
20	Interspecies Variability in Expression of Hepatobiliary Transporters across Human, Dog, Monkey, and Rat as Determined by Quantitative Proteomics. Drug Metabolism and Disposition, 2015, 43, 367-374.	1.7	152
21	Evaluation of Organic Anion Transporting Polypeptide 1B1 and 1B3 Humanized Mice as a Translational Model to Study the Pharmacokinetics of Statins. Drug Metabolism and Disposition, 2014, 42, 1301-1313.	1.7	31
22	Interindividual Variability in Hepatic Organic Anion-Transporting Polypeptides and P-Glycoprotein (ABCB1) Protein Expression: Quantification by Liquid Chromatography Tandem Mass Spectroscopy and Influence of Genotype, Age, and Sex. Drug Metabolism and Disposition, 2014, 42, 78-88.	1.7	169
23	Pitavastatin is a more sensitive and selective organic anionâ€transporting polypeptide <scp>1B</scp> clinical probe than rosuvastatin. British Journal of Clinical Pharmacology, 2014, 78, 587-598.	1.1	138
24	Critical Review of Preclinical Approaches to Investigate Cytochrome P450–Mediated Therapeutic Protein Drug-Drug Interactions and Recommendations for Best Practices: A White Paper. Drug Metabolism and Disposition, 2013, 41, 1598-1609.	1.7	68
25	In Vitro Assessment of Drug-Drug Interaction Potential of Boceprevir Associated with Drug Metabolizing Enzymes and Transporters. Drug Metabolism and Disposition, 2013, 41, 668-681.	1.7	50
26	Species differences in drug transporters and implications for translating preclinical findings to humans. Expert Opinion on Drug Metabolism and Toxicology, 2013, 9, 237-252.	1.5	239
27	Characterization of Multidrug Resistance 1a/P-Glycoprotein Knockout Rats Generated by Zinc Finger Nucleases. Molecular Pharmacology, 2012, 81, 220-227.	1.0	48
28	Comments on Mougey et al. (2009). Pharmacogenetics and Genomics, 2012, 22, 319-322.	0.7	12
29	Determining P-glycoprotein–drug interactions: Evaluation of reconstituted P-glycoprotein in a liposomal system and LLC-MDR1 polarized cell monolayers. Journal of Pharmacological and Toxicological Methods, 2012, 65, 64-74.	0.3	30
30	Membrane transporters in drug development. Nature Reviews Drug Discovery, 2010, 9, 215-236.	21.5	2,886
31	In Vitro Techniques to Study Transporter-Based DDI. , 2010, , 237-255.		1
32	Identification of pregnane-X receptor target genes and coactivator and corepressor binding to promoter elements in human hepatocytes. Nucleic Acids Research, 2009, 37, 1160-1173.	6.5	67
33	Metabolism and Renal Elimination of Gaboxadol in Humans: Role of UDP-Glucuronosyltransferases and Transporters. Pharmaceutical Research, 2009, 26, 459-468.	1.7	18
34	In Vitro and in Vivo Induction of Cytochrome P450: A Survey of the Current Practices and Recommendations: A Pharmaceutical Research and Manufacturers of America Perspective. Drug Metabolism and Disposition, 2009, 37, 1339-1354.	1.7	152
35	Role of the Murine Organic Anion-Transporting Polypeptide 1b2 (Oatp1b2) in Drug Disposition and Hepatotoxicity: Fig. 1 Molecular Pharmacology, 2008, 74, 309-311.	1.0	38
36	Comparison of Immortalized Fa2N-4 Cells and Human Hepatocytes as in Vitro Models for Cytochrome P450 Induction. Drug Metabolism and Disposition, 2008, 36, 1046-1055.	1.7	91

3

#	Article	IF	Citations
37	Transport of the Dipeptidyl Peptidase-4 Inhibitor Sitagliptin by Human Organic Anion Transporter 3, Organic Anion Transporting Polypeptide 4C1, and Multidrug Resistance P-glycoprotein. Journal of Pharmacology and Experimental Therapeutics, 2007, 321, 673-683.	1.3	158
38	Identification of potential pharmacological and toxicological targets differentiating structural analogs by a combination of transcriptional profiling and promoter analysis in LS-180 and Caco-2 adenocarcinoma cell lines. Pharmacogenetics and Genomics, 2006, 16, 579-599.	0.7	29
39	Characterization of Mice Lacking the Multidrug Resistance Protein Mrp2 (Abcc2). Journal of Pharmacology and Experimental Therapeutics, 2006, 317, 579-589.	1.3	129
40	Activators of the Rat Pregnane X Receptor Differentially Modulate Hepatic and Intestinal Gene Expression. Molecular Pharmacology, 2004, 65, 1159-1171.	1.0	74
41	Transport of Ethinylestradiol Glucuronide and Ethinylestradiol Sulfate by the Multidrug Resistance Proteins MRP1, MRP2, and MRP3. Journal of Pharmacology and Experimental Therapeutics, 2004, 309, 156-164.	1.3	98
42	Chapter 31. Enzyme induction â€" Mechanisms, assays, and relevance to drug discovery and development. Annual Reports in Medicinal Chemistry, 2003, 38, 315-331.	0.5	2
43	Role of the N-terminal Transmembrane Region of the Multidrug Resistance Protein MRP2 in Routing to the Apical Membrane in MDCKII Cells. Journal of Biological Chemistry, 2002, 277, 31048-31055.	1.6	65
44	Interactions of the Human Multidrug Resistance Proteins MRP1 and MRP2 with Organic Anions. Molecular Pharmacology, 2000, 57, 760-768.	1.0	299
45	A Family of Drug Transporters: the Multidrug Resistance-Associated Proteins. Journal of the National Cancer Institute, 2000, 92, 1295-1302.	3.0	1,579
46	The multidrug resistance protein family. Biochimica Et Biophysica Acta - Biomembranes, 1999, 1461, 347-357.	1.4	550
47	Canalicular multispecific organic anion transporter/multidrug resistance protein 2 mediates low-affinity transport of reduced glutathione. Biochemical Journal, 1999, 338, 393-401.	1.7	232
48	Functional Multidrug Resistance Protein (MRP1) Lacking the N-terminal Transmembrane Domain. Journal of Biological Chemistry, 1998, 273, 32167-32175.	1.6	283
49	Transport of glutathione prostaglandin A conjugates by the multidrug resistance protein 1. FEBS Letters, 1997, 419, 112-116.	1.3	130
50	Increased sensitivity to anticancer drugs and decreased inflammatory response in mice lacking the multidrug resistance-associated protein. Nature Medicine, 1997, 3, 1275-1279.	15.2	409
51	Transport of the glutathione conjugate of ethacrynic acid by the human multidrug resistance protein MRP. FEBS Letters, 1996, 391, 126-130.	1.3	55
52	Phylogenetic analysis of the RNA polymerases of Trypanosoma brucei, with special reference to class-specific transcription. Current Genetics, 1990, 18, 547-551.	0.8	8
53	TheTrypanosoma bruceiprotein phosphatase gene: polycistronic transcription with the RNA polymerase II largest subunit gene. Nucleic Acids Research, 1990, 18, 5089-5095.	6. 5	29
54	Unusual C-terminal domain of the largest subunit of RNA polymerase II of Crithidia fasticulata. Nucleic Acids Research, 1989, 17, 3403-3413.	6. 5	26

#	Article	IF	CITATIONS
55	Trypanosoma brucei contains two RNA polymerase II largest subunit genes with an altered C-terminal domain. Cell, 1989, 56, 585-597.	13.5	125