
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1142845/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                  | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Myosin-dependent endoplasmic reticulum motility and F-actin organization in plant cells. Proceedings of the United States of America, 2010, 107, 6894-6899.                                              | 7.1 | 306       |
| 2  | Identification and Characterization of Nuclear Pore Complex Components in <i>Arabidopsis<br/>thaliana</i> Â Â. Plant Cell, 2011, 22, 4084-4097.                                                          | 6.6 | 256       |
| 3  | A novel membrane fusion-mediated plant immunity against bacterial pathogens. Genes and Development, 2009, 23, 2496-2506.                                                                                 | 5.9 | 244       |
| 4  | Vacuolar sorting receptor for seed storage proteins in Arabidopsis thaliana. Proceedings of the<br>National Academy of Sciences of the United States of America, 2003, 100, 16095-16100.                 | 7.1 | 235       |
| 5  | Why green fluorescent fusion proteins have not been observed in the vacuoles of higher plants. Plant<br>Journal, 2003, 35, 545-555.                                                                      | 5.7 | 226       |
| 6  | Myosin XI-i Links the Nuclear Membrane to the Cytoskeleton to Control Nuclear Movement and Shape<br>in Arabidopsis. Current Biology, 2013, 23, 1776-1781.                                                | 3.9 | 193       |
| 7  | Blue light-induced association of phototropin 2 with the Golgi apparatus. Plant Journal, 2006, 45, 994-1005.                                                                                             | 5.7 | 146       |
| 8  | KATAMARI1/MURUS3 Is a Novel Golgi Membrane Protein That Is Required for Endomembrane<br>Organization in Arabidopsis. Plant Cell, 2005, 17, 1764-1776.                                                    | 6.6 | 134       |
| 9  | Identification and Dynamics of <i>Arabidopsis</i> Adaptor Protein-2 Complex and Its Involvement in Floral Organ Development. Plant Cell, 2013, 25, 2958-2969.                                            | 6.6 | 121       |
| 10 | Arabidopsis VPS35, a Retromer Component, is Required for Vacuolar Protein Sorting and Involved in<br>Plant Growth and Leaf Senescence. Plant and Cell Physiology, 2008, 49, 142-156.                     | 3.1 | 105       |
| 11 | A Missense Mutation in the <i>Arabidopsis</i> COPII Coat Protein Sec24A Induces the Formation of Clusters of the Endoplasmic Reticulum and Golgi Apparatus. Plant Cell, 2009, 21, 3655-3671.             | 6.6 | 103       |
| 12 | GNOM-LIKE1/ERMO1 and SEC24a/ERMO2 Are Required for Maintenance of Endoplasmic Reticulum<br>Morphology in <i>Arabidopsis thaliana</i> Â. Plant Cell, 2009, 21, 3672-3685.                                 | 6.6 | 92        |
| 13 | Arabidopsis Vacuolar Sorting Mutants (green fluorescent seed) Can Be Identified Efficiently by<br>Secretion of Vacuole-Targeted Green Fluorescent Protein in Their Seeds. Plant Cell, 2007, 19, 597-609. | 6.6 | 87        |
| 14 | Arabidopsis KAM2/GRV2 Is Required for Proper Endosome Formation and Functions in Vacuolar Sorting and Determination of the Embryo Growth Axis. Plant Cell, 2007, 19, 320-332.                            | 6.6 | 83        |
| 15 | The Novel Nuclear Envelope Protein KAKU4 Modulates Nuclear Morphology in <i>Arabidopsis</i> Â. Plant<br>Cell, 2014, 26, 2143-2155.                                                                       | 6.6 | 81        |
| 16 | The AP-1 µ Adaptin is Required for KNOLLE Localization at the Cell Plate to Mediate Cytokinesis in<br>Arabidopsis. Plant and Cell Physiology, 2013, 54, 838-847.                                         | 3.1 | 79        |
| 17 | The molecular architecture of the plant nuclear pore complex. Journal of Experimental Botany, 2013, 64, 823-832.                                                                                         | 4.8 | 78        |
| 18 | A Vacuolar Sorting Receptor PV72 on the Membrane of Vesicles that Accumulate Precursors of Seed<br>Storage Proteins (PAC Vesicles). Plant and Cell Physiology, 2002, 43, 1086-1095.                      | 3.1 | 74        |

| #  | Article                                                                                                                                                                                                                                                       | IF   | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | An ER-Localized Form of PV72, a Seed-Specific Vacuolar Sorting Receptor, Interferes the Transport of an NPIR-Containing Proteinase in Arabidopsis Leaves. Plant and Cell Physiology, 2004, 45, 9-17.                                                          | 3.1  | 64        |
| 20 | Involvement of the nuclear pore complex in morphology of the plant nucleus. Nucleus, 2011, 2, 168-172.                                                                                                                                                        | 2.2  | 63        |
| 21 | <scp>GFS</scp> 9/ <scp>TT</scp> 9 contributes to intracellular membrane trafficking and flavonoid<br>accumulation in <i><scp>A</scp>rabidopsis thaliana</i> . Plant Journal, 2014, 80, 410-423.                                                               | 5.7  | 63        |
| 22 | Regulation of organ straightening and plant posture by an actin–myosin XI cytoskeleton. Nature<br>Plants, 2015, 1, 15031.                                                                                                                                     | 9.3  | 60        |
| 23 | An isoform of myosin XI is responsible for the translocation of endoplasmic reticulum in tobacco cultured BY-2 cells. Journal of Experimental Botany, 2009, 60, 197-212.                                                                                      | 4.8  | 59        |
| 24 | Leaf Endoplasmic Reticulum Bodies Identified in Arabidopsis Rosette Leaves Are Involved in Defense<br>against Herbivory. Plant Physiology, 2019, 179, 1515-1524.                                                                                              | 4.8  | 58        |
| 25 | Endoplasmic reticulum-resident proteins are constitutively transported to vacuoles for degradation.<br>Plant Journal, 2004, 39, 393-402.                                                                                                                      | 5.7  | 53        |
| 26 | MAIGO5 Functions in Protein Export from Golgi-Associated Endoplasmic Reticulum Exit Sites<br>in <i>Arabidopsis</i> Â. Plant Cell, 2013, 25, 4658-4675.                                                                                                        | 6.6  | 53        |
| 27 | Gene expression profiles in rice gametes and zygotes: identification of gamete-enriched genes and up-<br>or down-regulated genes in zygotes after fertilization. Journal of Experimental Botany, 2013, 64,<br>1927-1940.                                      | 4.8  | 52        |
| 28 | Functional insights of nucleocytoplasmic transport in plants. Frontiers in Plant Science, 2014, 5, 118.                                                                                                                                                       | 3.6  | 50        |
| 29 | Functions of plant-specific myosin XI: from intracellular motility to plant postures. Current Opinion in Plant Biology, 2015, 28, 30-38.                                                                                                                      | 7.1  | 44        |
| 30 | Structural and functional relationships between plasmodesmata and plant endoplasmic<br>reticulum–plasma membrane contact sites consisting of three synaptotagmins. New Phytologist, 2020,<br>226, 798-808.                                                    | 7.3  | 40        |
| 31 | Sphingoid base composition of monoglucosylceramide in Brassicaceae. Journal of Plant Physiology, 2000, 157, 453-456.                                                                                                                                          | 3.5  | 39        |
| 32 | Degradation of Sphingoid Long-Chain Base 1-Phosphates (LCB-1Ps): Functional Characterization and<br>Expression of AtDPL1 Encoding LCB-1P Lyase Involved in the Dehydration Stress Response in<br>Arabidopsis. Plant and Cell Physiology, 2008, 49, 1758-1763. | 3.1  | 39        |
| 33 | Subnuclear gene positioning through lamina association affects copper tolerance. Nature<br>Communications, 2020, 11, 5914.                                                                                                                                    | 12.8 | 37        |
| 34 | Characterization of an Arabidopsis cDNA Encoding a Subunit of Serine Palmitoyltransferase, the<br>Initial Enzyme in Sphingolipid Biosynthesis. Plant and Cell Physiology, 2001, 42, 1274-1281.                                                                | 3.1  | 36        |
| 35 | MAG4/Atp115 is a Golgi-Localized Tethering Factor that Mediates Efficient Anterograde Transport in Arabidopsis. Plant and Cell Physiology, 2010, 51, 1777-1787.                                                                                               | 3.1  | 33        |
| 36 | Phosphorylation of the C Terminus of RHD3 Has a Critical Role in Homotypic ER Membrane Fusion in<br>Arabidopsis. Plant Physiology, 2016, 170, 867-880.                                                                                                        | 4.8  | 31        |

| #  | Article                                                                                                                                                                                                                              | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Plant-specific insertions in the soybean aspartic proteinases, soyAP1 and soyAP2, perform different functions of vacuolar targeting. Journal of Plant Physiology, 2006, 163, 856-862.                                                | 3.5 | 29        |
| 38 | Recent advances in understanding plant nuclear envelope proteins involved in nuclear morphology.<br>Journal of Experimental Botany, 2015, 66, 1641-1647.                                                                             | 4.8 | 28        |
| 39 | Comprehensive nuclear proteome of Arabidopsis obtained by sequential extraction. Nucleus, 2019, 10, 81-92.                                                                                                                           | 2.2 | 28        |
| 40 | Nucleoporin 75 Is Involved in the Ethylene-Mediated Production of Phytoalexin for the Resistance of<br><i>Nicotiana benthamiana</i> to <i>Phytophthora infestans</i> . Molecular Plant-Microbe<br>Interactions, 2014, 27, 1318-1330. | 2.6 | 27        |
| 41 | BEACH-Domain Proteins Act Together in a Cascade to Mediate Vacuolar Protein Trafficking and Disease<br>Resistance in Arabidopsis. Molecular Plant, 2015, 8, 389-398.                                                                 | 8.3 | 27        |
| 42 | Synaptotagmin-Associated Endoplasmic Reticulum-Plasma Membrane Contact Sites Are Localized to<br>Immobile ER Tubules. Plant Physiology, 2018, 178, 641-653.                                                                          | 4.8 | 27        |
| 43 | A missense mutation in the vacuolar protein GOLD36 causes organizational defects in the ER and aberrant protein trafficking in the plant secretory pathway. Plant Journal, 2010, 63, 901-913.                                        | 5.7 | 23        |
| 44 | Plant Nuclei Move to Escape Ultraviolet-Induced DNA Damage and Cell Death. Plant Physiology, 2016,<br>170, 678-685.                                                                                                                  | 4.8 | 22        |
| 45 | An ABC transporter B family protein, ABCB19, is required for cytoplasmic streaming and gravitropism of the inflorescence stems. Plant Signaling and Behavior, 2016, 11, e1010947.                                                    | 2.4 | 21        |
| 46 | The nuclear envelope protein KAKU4 determines the migration order of the vegetative nucleus and sperm cells in pollen tubes. Journal of Experimental Botany, 2020, 71, 6273-6281.                                                    | 4.8 | 20        |
| 47 | ANGUSTIFOLIA Regulates Actin Filament Alignment for Nuclear Positioning in Leaves. Plant Physiology, 2019, 179, 233-247.                                                                                                             | 4.8 | 18        |
| 48 | Nuclear pore complex-mediated gene expression in Arabidopsis thaliana. Journal of Plant Research, 2020, 133, 449-455.                                                                                                                | 2.4 | 17        |
| 49 | Nup82 functions redundantly with Nup136 in a salicylic acid-dependent defense response of<br>Arabidopsis thaliana. Nucleus, 2017, 8, 301-311.                                                                                        | 2.2 | 16        |
| 50 | The AP-1 Complex is Required for Proper Mucilage Formation in Arabidopsis Seeds. Plant and Cell Physiology, 2018, 59, 2331-2338.                                                                                                     | 3.1 | 15        |
| 51 | The Integrity of the Plant Golgi Apparatus Depends on Cell Growth-Controlled Activity of GNL1.<br>Molecular Plant, 2013, 6, 905-915.                                                                                                 | 8.3 | 14        |
| 52 | Identification of Periplasmic Root-Cap Mucilage in Developing Columella Cells of Arabidopsis thaliana.<br>Plant and Cell Physiology, 2019, 60, 1296-1303.                                                                            | 3.1 | 13        |
| 53 | Endoplasmic Reticulum (ER) Membrane Proteins (LUNAPARKs) are Required for Proper Configuration of the Cortical ER Network in Plant Cells. Plant and Cell Physiology, 2018, 59, 1931-1941.                                            | 3.1 | 8         |
| 54 | Fluorescent protein-based imaging and tissue-specific RNA-seq analysis of Arabidopsis hydathodes.<br>Journal of Experimental Botany, 2021, 72, 1260-1270.                                                                            | 4.8 | 8         |

| #  | Article                                                                                                                                                                                                    | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | Regulation and Physiological Significance of the Nuclear Shape in Plants. Frontiers in Plant Science, 2021, 12, 673905.                                                                                    | 3.6 | 7         |
| 56 | Biogenesis of leaf endoplasmic reticulum body is regulated by both jasmonate-dependent and<br>independent pathways. Plant Signaling and Behavior, 2019, 14, 1622982.                                       | 2.4 | 6         |
| 57 | Decreased Expression of a Gene Caused by a T-DNA Insertion in an Adjacent Gene in Arabidopsis. PLoS<br>ONE, 2016, 11, e0147911.                                                                            | 2.5 | 5         |
| 58 | Spatiotemporal relationship between auxin dynamics and hydathode development in Arabidopsis leaf<br>teeth. Plant Signaling and Behavior, 2021, , 1989216.                                                  | 2.4 | 3         |
| 59 | Exploring the Protein Composition of the Plant Nuclear Envelope. Methods in Molecular Biology, 2016, 1411, 45-65.                                                                                          | 0.9 | 2         |
| 60 | Subcellular localisation of an endoplasmic reticulum-plasma membrane tethering factor,<br>SYNAPTOTAGMIN 1, is affected by fluorescent protein fusion. Plant Signaling and Behavior, 2018, 13,<br>e1547577. | 2.4 | 1         |
| 61 | Computational Methods for Studying the Plant Nucleus. Methods in Molecular Biology, 2018, 1840, 205-219.                                                                                                   | 0.9 | 0         |
| 62 | In vitro assembly of nuclear envelope in tobacco cultured cells. Nucleus, 2021, 12, 82-89.                                                                                                                 | 2.2 | 0         |
| 63 | Validation of Nuclear Pore Complex Protein–Protein Interactions by Transient Expression in Plants.<br>Methods in Molecular Biology, 2022, 2502, 235-243.                                                   | 0.9 | 0         |