Merrill Elias

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1142697/publications.pdf Version: 2024-02-01

MEDDILL FLINS

#	Article	IF	CITATIONS
1	The Preclinical Phase of Alzheimer Disease. Archives of Neurology, 2000, 57, 808.	4.5	650
2	Untreated Blood Pressure Level Is Inversely Related to Cognitive Functioning: The Framingham Study. American Journal of Epidemiology, 1993, 138, 353-364.	3.4	594
3	Lower cognitive function in the presence of obesity and hypertension: the Framingham heart study. International Journal of Obesity, 2003, 27, 260-268.	3.4	569
4	NIDDM and Blood Pressure as Risk Factors for Poor Cognitive Performance: The Framingham Study. Diabetes Care, 1997, 20, 1388-1395.	8.6	339
5	Obesity, diabetes and cognitive deficit: The Framingham Heart Study. Neurobiology of Aging, 2005, 26, 11-16.	3.1	318
6	Framingham Stroke Risk Profile and Lowered Cognitive Performance. Stroke, 2004, 35, 404-409.	2.0	223
7	Chronic kidney disease, creatinine and cognitive functioning. Nephrology Dialysis Transplantation, 2009, 24, 2446-2452.	0.7	167
8	Blood Pressure-Related Cognitive Decline. Hypertension, 2004, 44, 631-636.	2.7	159
9	Arterial Pulse Wave Velocity and Cognition With Advancing Age. Hypertension, 2009, 53, 668-673.	2.7	157
10	Homocysteine and Cognitive Performance in the Framingham Offspring Study: Age Is Important. American Journal of Epidemiology, 2005, 162, 644-653.	3.4	123
11	Hypertension and Cognitive Functioning. Hypertension, 2012, 60, 260-268.	2.7	123
12	New Norms for a New Generation: Cognitive Performance in the Framingham Offspring Cohort. Experimental Aging Research, 2004, 30, 333-358.	1.2	108
13	Demographic and socioeconomic disparity in nutrition: application of a novel Correlated Component Regression approach. BMJ Open, 2015, 5, e006814-e006814.	1.9	98
14	Decline in renal functioning is associated with longitudinal decline in global cognitive functioning, abstract reasoning and verbal memory. Nephrology Dialysis Transplantation, 2013, 28, 1810-1819.	0.7	92
15	Clinical significance of cognitive performance by hypertensive patients Hypertension, 1987, 9, 192-197.	2.7	89
16	Blood pressure, hypertension, and age as risk factors for poor cognitive performance. Experimental Aging Research, 1995, 21, 393-417.	1.2	85
17	Cardiovascular Health and Cognitive Function: The Maine-Syracuse Longitudinal Study. PLoS ONE, 2014, 9, e89317.	2.5	82
18	ls Blood Pressure An Important Variable in Research on Aging and Neuropsychological Test Performance?. Journal of Gerontology, 1990, 45, P128-P135.	1.9	81

Merrill Elias

#	Article	IF	CITATIONS
19	Homocysteine, Folate, and Vitamins B6 and B12 Blood Levels in Relation to Cognitive Performance: The Maine-Syracuse Study. Psychosomatic Medicine, 2006, 68, 547-554.	2.0	78
20	Blood Pressure and Cognitive Function in an African-American and a Caucasian-American Sample: The Maine-Syracuse Study. Psychosomatic Medicine, 2005, 67, 707-714.	2.0	76
21	Kidney Disease and Cognitive Function. Contributions To Nephrology, 2013, 179, 42-57.	1.1	75
22	Atrial Fibrillation Is Associated With Lower Cognitive Performance in the Framingham Offspring Men. Journal of Stroke and Cerebrovascular Diseases, 2006, 15, 214-222.	1.6	74
23	Relation Between Central Adiposity and Cognitive Function in the Maine–Syracuse Study: Attenuation by Physical Activity. Annals of Behavioral Medicine, 2008, 35, 341-350.	2.9	71
24	Chocolate intake is associated with better cognitive function: The Maine-Syracuse Longitudinal Study. Appetite, 2016, 100, 126-132.	3.7	65
25	Obesity, Cognitive Functioning and Dementia: Back to the Future. Journal of Alzheimer's Disease, 2012, 30, S113-S125.	2.6	64
26	Left Ventricular Mass, Blood Pressure, and Lowered Cognitive Performance in the Framingham Offspring. Hypertension, 2007, 49, 439-445.	2.7	62
27	Metabolic Syndrome, Cognitive Performance, and Dementia. Journal of Alzheimer's Disease, 2012, 30, S77-S87.	2.6	60
28	A behavioral study of middle-aged chest pain patients: Physical symptom reporting, anxiety, and depression. Experimental Aging Research, 1982, 8, 45-51.	1.2	55
29	A longitudinal study of blood pressure in relation to performance on the Wechsler Adult Intelligence Scale Health Psychology, 1998, 17, 486-493.	1.6	53
30	Relation between dairy food intake and cognitive function: The Maine-Syracuse Longitudinal Study. International Dairy Journal, 2012, 22, 15-23.	3.0	48
31	Homocysteine and cognitive performance: Modification by the ApoE genotype. Neuroscience Letters, 2008, 430, 64-69.	2.1	46
32	Higher HDL Cholesterol Is Associated with Better Cognitive Function: the Maine-Syracuse Study. Journal of the International Neuropsychological Society, 2014, 20, 961-970.	1.8	42
33	Cardiovascular health and arterial stiffness: the Maine-Syracuse Longitudinal Study. Journal of Human Hypertension, 2014, 28, 444-449.	2.2	40
34	Relationship of age and hypertension to neuropsychological test performance. Experimental Aging Research, 1979, 5, 351-372.	1.2	38
35	From Blood Pressure to Physical Disability. Hypertension, 2010, 55, 1360-1365.	2.7	32
36	A Longitudinal Study of Neuropsychological Performance by Hypertensives and Normotensives: A Third Measurement Point. Journal of Gerontology, 1989, 44, P25-P28.	1.9	31

MERRILL ELIAS

#	Article	IF	CITATIONS
37	Cognitive Performance and Age: Norms from the Maine-Syracuse Study. Experimental Aging Research, 2007, 33, 205-271.	1.2	31
38	Association between depressive symptoms, use of antidepressant medication and the metabolic syndrome: the Maine-Syracuse Study. BMC Public Health, 2016, 16, 502.	2.9	31
39	The Influence of Gender and Age on Halstead-Reitan Neuropsychological Test Performance. Journal of Gerontology, 1993, 48, P278-P281.	1.9	28
40	Anxiety and depression in young and middle aged hypertensive and normotensive subjects. Experimental Aging Research, 1979, 5, 15-30.	1.2	26
41	A longitudinal study of blood pressure in relation to performance on the Wechsler Adult Intelligence Scale Health Psychology, 1998, 17, 486-493.	1.6	26
42	Daily chocolate consumption is inversely associated with insulin resistance and liver enzymes in the Observation of Cardiovascular Risk Factors in Luxembourg study. British Journal of Nutrition, 2016, 115, 1661-1668.	2.3	24
43	Measurement-to-Measurement Blood Pressure Variability Is Related to Cognitive Performance. Hypertension, 2014, 64, 1094-1101.	2.7	23
44	Deterioration in Renal Function Is Associated With Increased Arterial Stiffness. American Journal of Hypertension, 2014, 27, 207-214.	2.0	23
45	Associations between Type 2 Diabetes Mellitus and Arterial Stiffness: A Prospective Analysis Based on the Maine-Syracuse Study. Pulse, 2017, 5, 88-98.	1.9	23
46	Cognitive function and cardiovascular responsivity in subjects with a parental history of hypertension. Journal of Behavioral Medicine, 1993, 16, 277-294.	2.1	22
47	Systolic orthostatic hypotension is related to lowered cognitive function: Findings from the Maineâ€Syracuse Longitudinal Study. Journal of Clinical Hypertension, 2017, 19, 1357-1365.	2.0	22
48	Habitual chocolate intake and type 2 diabetes mellitus in the Maine-Syracuse Longitudinal Study: (1975–2010): Prospective observations. Appetite, 2017, 108, 263-269.	3.7	22
49	HIGHER COGNITIVE PERFORMANCE IS PROSPECTIVELY ASSOCIATED WITH HEALTHY DIETARY CHOICES: THE MAINE SYRACUSE LONGITUDINAL STUDY. journal of prevention of Alzheimer's disease, The, 2015, 2, 1-9.	2.7	21
50	Cardiovascular health: a cross-national comparison between the Maine Syracuse Study (Central New) Tj ETQq0 C	0,rgBT /C	verlock 10 Tf
51	Clinical Trials of Blood Pressure Lowering and Antihypertensive Medication: Is Cognitive Measurement State-of-the-Art?. American Journal of Hypertension, 2018, 31, 631-642.	2.0	20
52	Risk for cognitive impairment across 22 measures of cognitive ability in early-stage chronic kidney disease. Nephrology Dialysis Transplantation, 2017, 32, gfw005.	0.7	19
53	Adherence to a Mediterranean diet is associated with cognitive function in an older non-Mediterranean sample: findings from the Maine-Syracuse Longitudinal Study. Nutritional Neuroscience, 2019, 24, 1-12.	3.1	17

54Human Errors in Automated Office Blood Pressure Measurement. Hypertension, 2021, 77, 6-15.2.716

MERRILL ELIAS

#	Article	IF	CITATIONS
55	A 15-Year Longitudinal Study of Halstead-Reitan Neuropsychological Test Performance. Journals of Gerontology - Series B Psychological Sciences and Social Sciences, 1996, 51B, P331-P334.	3.9	15
56	Normative Data for Elderly Adults: The Maine-Syracuse Study. Experimental Aging Research, 2011, 37, 142-178.	1.2	15
57	Interactions between plasma homocysteine and arterial stiffness in chronic kidney disease in community-dwelling individuals: The Maine-Syracuse Study. Journal of Human Hypertension, 2015, 29, 726-731.	2.2	15
58	Sugar-sweetened soft drinks are associated with poorer cognitive function in individuals with type 2 diabetes: the Maine–Syracuse Longitudinal Study. British Journal of Nutrition, 2016, 115, 1397-1405.	2.3	15
59	The Renaissance of Heart Rate Variability as a Predictor of Cognitive Functioning. American Journal of Hypertension, 2018, 31, 21-23.	2.0	15
60	Poorer Visual Acuity Is Associated with Declines in Cognitive Performance Across Multiple Cognitive Domains: The Maine-Syracuse Longitudinal Study. Journal of the International Neuropsychological Society, 2018, 24, 746-754.	1.8	14
61	Symptoms reported on the cornell medical index in relationship to hypertension and age. Experimental Aging Research, 1978, 4, 421-431.	1.2	13
62	Tea, but not coffee consumption, is associated with components of arterial pressure. The Observation of Cardiovascular Risk Factors study in Luxembourg. Nutrition Research, 2015, 35, 557-565.	2.9	13
63	Use of the satz-mogel abbreviated wais with hospitalized geriatric patients. Experimental Aging Research, 1978, 4, 479-491.	1.2	11
64	Relation of Habitual Chocolate Consumption to Arterial Stiffness in a Community-Based Sample: Preliminary Findings. Pulse, 2016, 4, 28-37.	1.9	10
65	Determining neuropsychological cut scores for older, healthy adults. Experimental Aging Research, 1990, 16, 209-20.	1.2	10
66	The Eye is the Window to the Kidney and Brain. EBioMedicine, 2016, 5, 24-25.	6.1	9
67	Improved cognitive performance after a single dialysis session: where do we go from here?. Nephrology Dialysis Transplantation, 2015, 30, 1414-1417.	0.7	8
68	Adherence to a Mediterranean diet associated with lower blood pressure in a US sample: Findings from the Maine‧yracuse Longitudinal Study. Journal of Clinical Hypertension, 2020, 22, 2276-2284.	2.0	8
69	Prevalence of secondary hypertension and unusual aspects of the treatment of hypertension in elderly individuals. Geriatric Nephrology and Urology, 1992, 2, 91-98.	0.3	7
70	Intake of Lutein-Rich Vegetables Is Associated with Higher Levels of Physical Activity. Nutrients, 2015, 7, 8058-8071.	4.1	7
71	New Evidence for Homocysteine Lowering for Management of Treatment-Resistant Hypertension. American Journal of Hypertension, 2022, 35, 303-305.	2.0	6
72	Reclaiming the importance of homocysteine as a marker of cardiovascular and neurologic disease. Journal of Internal Medicine, 2021, 290, 1098-1099.	6.0	5

Merrill Elias

#	Article	IF	CITATIONS
73	High-Normal Blood Pressure and Cognition: Supplying the Missing Data. Hypertension, 2008, 52, e1-2; author reply e3.	2.7	4
74	Age modifies the relation between intraindividual measurement-to-measurement variation in blood pressure and cognitive function. Journal of Hypertension, 2018, 36, 268-276.	0.5	3
75	Carotid Artery Blood Flow Velocities and Cognitive Performance: Forecasting Cognitive Decline. American Journal of Hypertension, 2019, 32, 237-239.	2.0	3
76	Heart/body weight ratios for aging high and low blood pressure mice. Experimental Aging Research, 1977, 3, 231-238.	1.2	2
77	Albuminuria and Cognitive Performance: New Evidence for Consideration of a Risk Factor Precursor Model From the Maastricht Study. American Journal of Kidney Diseases, 2017, 69, 163-165.	1.9	2
78	Parameters of Left Ventricular Mass and Dementia. Hypertension, 2018, 71, 411-412.	2.7	2
79	Obesity, Cognitive Functioning, and Dementia: A Lifespan Prospective. , 2019, , 421-456.		2
80	Dairy food intake, diet patterns, and health: Findings from the Maine-Syracuse Longitudinal Study. International Dairy Journal, 2019, 91, 64-70.	3.0	2
81	The Need for Accurate Data on Blood Pressure Measurement in the Dental Office. American Journal of Hypertension, 2020, 33, 297-300.	2.0	2
82	Corroboration of the utility of the Satz-Mogel abbreviated WAIS with hospitalized geriatric patients. Experimental Aging Research, 1980, 6, 181-184.	1.2	1
83	Introduction: The aging driver phenomenon. Experimental Aging Research, 1994, 20, 1-2.	1.2	1
84	High Rates of Uncontrolled Blood Pressure: Pulse Wave Velocity and Future Opportunities. Journal of Clinical Hypertension, 2014, 16, 77-78.	2.0	1
85	Delayed Response to Antihypertension Medication. Hypertension, 2017, 70, 30-31.	2.7	1
86	Intensive Blood Pressure Control Improves Cognitive Performance: Pushing the Envelope cum Judicia. American Journal of Hypertension, 2017, 30, 556-558.	2.0	1
87	Diastolic Blood Pressure, Not Just Systolic Blood Pressure, Is Related to Cerebral Measures in Middle Age: Implications for Prospective Studies. American Journal of Hypertension, 2018, 31, 1263-1265.	2.0	1
88	Yogurt Intake and Risk of Cardiovascular Disease Among Hypertensive Individuals: Is It Time for a Clinical Trial?. American Journal of Hypertension, 2018, 31, e5-e6.	2.0	1
89	Setting the record straight for two heroes in hypertension: John J. Hay and Paul Dudley White. Journal of Clinical Hypertension, 2019, 21, 1429-1431.	2.0	1
90	Leisure activity for dementia prevention. Neurology, 2020, 95, 895-896.	1.1	1

MERRILL ELIAS

#	Article	IF	CITATIONS
91	Higher yogurt intake is associated with lower blood pressure in hypertensive individuals: Cross-sectional findings from the Maine–Syracuse longitudinal study. International Dairy Journal, 2021, 122, 105159.	3.0	1
92	The Perils of Automated Wrist-Cuff Devices and Dental Chairs in Opportunistic Blood Pressure Screening. American Journal of Hypertension, 2021, 34, 567-568.	2.0	1
93	Dairy Products and Cognitive Functions. , 2014, , 403-415.		0
94	Obesity, Cognitive Functioning, and Dementia. , 2014, , 385-402.		0
95	Effects of age and high blood pressure on intelligence. Experimental Aging Research, 1991, 17, 96.	1.2	0