
Alessandra Migliorini

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1142693/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Iron rich basaltic eucrites, implication on spectral properties and parental bodies. Icarus, 2022, 371, 114653.	2.5	2
2	Stability of the Jupiter Southern Polar Vortices Inspected Through Vorticity Using Juno/JIRAM Data. Journal of Geophysical Research E: Planets, 2022, 127, .	3.6	3
3	Characterization of V-type asteroids orbiting in the middle and outer main belt. Monthly Notices of the Royal Astronomical Society, 2021, 504, 2019-2032.	4.4	8
4	On the clouds and ammonia in Jupiter's upper troposphere from Juno JIRAM reflectivity observations. Monthly Notices of the Royal Astronomical Society, 2021, 503, 4892-4907.	4.4	5
5	Oscillations and Stability of the Jupiter Polar Cyclones. Geophysical Research Letters, 2021, 48, e2021GL094235.	4.0	11
6	Morphology of the Auroral Tail of Io, Europa, and Ganymede From JIRAM Lâ€Band Imager. Journal of Geophysical Research: Space Physics, 2021, 126, e2021JA029450.	2.4	15
7	Regions of interest on Ganymede's and Callisto's surfaces as potential targets for ESA's JUICE mission. Planetary and Space Science, 2021, 208, 105324.	1.7	12
8	Infrared observations of Io from Juno. Icarus, 2020, 341, 113607.	2.5	23
9	Juno/JIRAM: Planning and commanding activities. Advances in Space Research, 2020, 65, 598-615.	2.6	5
10	Turbulence Power Spectra in Regions Surrounding Jupiter's South Polar Cyclones From Juno/JIRAM. Journal of Geophysical Research E: Planets, 2020, 125, e2019JE006096.	3.6	8
11	Mapping Io's Surface Composition With Juno/JIRAM. Journal of Geophysical Research E: Planets, 2020, 125, e2020JE006522.	3.6	8
12	Infrared Observations of Ganymede From the Jovian InfraRed Auroral Mapper on Juno. Journal of Geophysical Research E: Planets, 2020, 125, e2020JE006508.	3.6	16
13	Cometary Comae-Surface Links. Space Science Reviews, 2020, 216, 130.	8.1	11
14	Two‥ear Observations of the Jupiter Polar Regions by JIRAM on Board Juno. Journal of Geophysical Research E: Planets, 2020, 125, e2019JE006098.	3.6	24
15	Preliminary estimation of the detection possibilities of Ganymede's water vapor environment with MAJIS. Planetary and Space Science, 2020, 191, 105004.	1.7	5
16	On the Spatial Distribution of Minor Species in Jupiter's Troposphere as Inferred From Juno JIRAM Data. Journal of Geophysical Research E: Planets, 2020, 125, e2019JE006206.	3.6	14
17	Dust Environment Model of the Interstellar Comet 2I/Borisov. Astrophysical Journal Letters, 2020, 893, L12.	8.3	18
18	Global maps of Venus nightside mean infrared thermal emissions obtained by VIRTIS on Venus Express. Icarus, 2020, 343, 113683.	2.5	3

#	Article	IF	CITATIONS
19	Validation of the IPSL Venus GCM Thermal Structure with Venus Express Data. Atmosphere, 2019, 10, 584.	2.3	9
20	JUNO/JIRAM's view of Jupiter's H ₃ ⁺ emissions. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2019, 377, 20180406.	3.4	10
21	Analysis of night-side dust activity on comet 67P observed by VIRTIS-M: a new method to constrain the thermal inertia on the surface. Astronomy and Astrophysics, 2019, 630, A21.	5.1	8
22	H3+ characteristics in the Jupiter atmosphere as observed at limb with Juno/JIRAM. Icarus, 2019, 329, 132-139.	2.5	11
23	The changing temperature of the nucleus of comet 67P induced by morphological and seasonal effects. Nature Astronomy, 2019, 3, 649-658.	10.1	34
24	Phaethon variability during December 2017 closest approach to Earth. Planetary and Space Science, 2019, 165, 115-123.	1.7	9
25	Diurnal variation of dust and gas production in comet 67P/Churyumov-Gerasimenko at the inbound equinox as seen by OSIRIS and VIRTIS-M on board Rosetta. Astronomy and Astrophysics, 2019, 630, A23.	5.1	9
26	Clusters of cyclones encircling Jupiter's poles. Nature, 2018, 555, 216-219.	27.8	90
27	Spectroscopy of five V-type asteroids in the middle and outer main belt. Monthly Notices of the Royal Astronomical Society, 2018, 475, 353-358.	4.4	10
28	Temperature estimation from hydroxyl airglow emission in the Venus night side mesosphere. Icarus, 2018, 300, 386-391.	2.5	1
29	Venus Atmospheric Thermal Structure and Radiative Balance. Space Science Reviews, 2018, 214, 1.	8.1	47
30	Summer outbursts in the coma of comet 67P/Churyumov–Gerasimenko as observed by Rosetta–VIRTIS. Monthly Notices of the Royal Astronomical Society, 2018, 481, 1235-1250.	4.4	20
31	Juno observations of spot structures and a split tail in lo-induced aurorae on Jupiter. Science, 2018, 361, 774-777.	12.6	53
32	First Estimate of Wind Fields in the Jupiter Polar Regions From JIRAMâ€Juno Images. Journal of Geophysical Research E: Planets, 2018, 123, 1511-1524.	3.6	24
33	The SSDC contribution to the improvement of knowledge by means of 3D data projections of minor bodies. Advances in Space Research, 2018, 62, 2306-2316.	2.6	8
34	The thermal structure of the Venus atmosphere: Intercomparison of Venus Express and ground based observations of vertical temperature and density profiles. Icarus, 2017, 294, 124-155.	2.5	34
35	Infrared observations of Jovian aurora from Juno's first orbits: Main oval and satellite footprints. Geophysical Research Letters, 2017, 44, 5308-5316.	4.0	30
36	Preliminary results on the composition of Jupiter's troposphere in hot spot regions from the JIRAM/Juno instrument. Geophysical Research Letters, 2017, 44, 4615-4624.	4.0	20

#	Article	IF	CITATIONS
37	Preliminary JIRAM results from Juno polar observations: 2. Analysis of the Jupiter southern H ₃ ⁺ emissions and comparison with the north aurora. Geophysical Research Letters, 2017, 44, 4633-4640.	4.0	20
38	Preliminary JIRAM results from Juno polar observations: 1. Methodology and analysis applied to the Jovian northern polar region. Geophysical Research Letters, 2017, 44, 4625-4632.	4.0	18
39	Characterization of the white ovals on Jupiter's southern hemisphere using the first data by the Juno/JIRAM instrument. Geophysical Research Letters, 2017, 44, 4660-4668.	4.0	15
40	Preliminary JIRAM results from Juno polar observations: 3. Evidence of diffuse methane presence in the Jupiter auroral regions. Geophysical Research Letters, 2017, 44, 4641-4648.	4.0	13
41	Evidence for the formation of comet 67P/Churyumov-Gerasimenko through gravitational collapse of a bound clump of pebbles. Monthly Notices of the Royal Astronomical Society, 2017, 469, S755-S773.	4.4	146
42	Comet 67P outbursts and quiescent coma at 1.3 au from the Sun: dust properties from Rosetta/VIRTIS-H observations. Monthly Notices of the Royal Astronomical Society, 2017, 469, S443-S458.	4.4	56
43	Spectral characterization of V-type asteroids outside the Vesta family. Monthly Notices of the Royal Astronomical Society, 2017, 464, 1718-1726.	4.4	16
44	How pristine is the interior of the comet 67P/Churyumov–Gerasimenko?. Monthly Notices of the Royal Astronomical Society, 2017, 469, S685-S694.	4.4	22
45	Properties of the dust in the coma of 67P/Churyumov-Gerasimenko observed with VIRTIS- M. Monthly Notices of the Royal Astronomical Society, 2016, , stw3197.	4.4	2
46	Three-dimensional direct simulation Monte-Carlo modeling of the coma of comet 67P/Churyumov-Gerasimenko observed by the VIRTIS and ROSINA instruments on board Rosetta. Astronomy and Astrophysics, 2016, 588, A134.	5.1	88
47	Analysis of the dust jet imaged by <i>Rosetta</i> VIRTIS-M in the coma of comet 67P/Churyumov–Gerasimenko on 2015 April 12. Monthly Notices of the Royal Astronomical Society, 2016, 462, S370-S375.	4.4	8
48	Mapping of hydrocarbons and H 3 + emissions at Jupiter's north pole using Galileo/NIMS data. Geophysical Research Letters, 2016, 43, 11,558.	4.0	7
49	Water and carbon dioxide distribution in the 67P/Churyumov-Gerasimenko coma from VIRTIS-M infrared observations. Astronomy and Astrophysics, 2016, 589, A45.	5.1	62
50	Investigation into the disparate origin of CO2 and H2O outgassing for Comet 67/P. Icarus, 2016, 277, 78-97.	2.5	61
51	The global surface composition of 67P/CG nucleus by Rosetta/VIRTIS. (I) Prelanding mission phase. Icarus, 2016, 274, 334-349.	2.5	54
52	Direct Simulation Monte Carlo modelling of the major species in the coma of comet 67P/Churyumov-Gerasimenko. Monthly Notices of the Royal Astronomical Society, 2016, 462, S156-S169.	4.4	87
53	Evolution of CO ₂ , CH ₄ , and OCS abundances relative to H ₂ O in the coma of comet 67P around perihelion from <i>Rosetta</i> /VIRTIS-H observations. Monthly Notices of the Royal Astronomical Society, 2016, 462, S170-S183.	4.4	72
54	Seasonal exposure of carbon dioxide ice on the nucleus of comet 67P/Churyumov-Gerasimenko. Science, 2016, 354, 1563-1566.	12.6	61

Alessandra Migliorini

#	Article	IF	CITATIONS
55	Exposed water ice on the nucleus of comet 67P/Churyumov–Gerasimenko. Nature, 2016, 529, 368-372.	27.8	104
56	Terrestrial <scp>OH</scp> nightglow measurements during the <scp>Rosetta</scp> flyby. Geophysical Research Letters, 2015, 42, 5670-5677.	4.0	7
57	VIRTIS on Rosetta: a unique technique to observe comet 67P/Churyumov-Gerasimenko – first results and prospects. Proceedings of SPIE, 2015, , .	0.8	4
58	Modeling VIRTIS/VEX O ₂ (<i>a</i> 1â^t <i>g</i>) nightglow profiles affected by the propagation of gravity waves in the Venus upper mesosphere. Journal of Geophysical Research E: Planets, 2014, 119, 2300-2316.	3.6	15
59	The Venus nighttime atmosphere as observed by the VIRTISâ€M instrument. Average fields from the complete infrared data set. Journal of Geophysical Research E: Planets, 2014, 119, 837-849.	3.6	32
60	The characteristics of the O2 Herzberg II and Chamberlain bands observed with VIRTIS/Venus Express. Icarus, 2013, 223, 609-614.	2.5	31
61	Oxygen nightglow emissions of Venus: Vertical distribution and collisional quenching. Icarus, 2013, 223, 602-608.	2.5	13
62	Comparative analysis of airglow emissions in terrestrial planets, observed with VIRTIS-M instruments on board Rosetta and Venus Express. Icarus, 2013, 226, 1115-1127.	2.5	11
63	Investigation of air temperature on the nightside of Venus derived from VIRTIS-H on board Venus-Express. Icarus, 2012, 217, 640-647.	2.5	59
64	Spectral and mineralogical characterization of inner main-belt V-type asteroids. Astronomy and Astrophysics, 2011, 533, A77.	5.1	38
65	Hydroxyl airglow on Venus in comparison with Earth. Planetary and Space Science, 2011, 59, 974-980.	1.7	7
66	Oxygen airglow emission on Venus and Mars as seen by VIRTIS/VEX and OMEGA/MEX imaging spectrometers. Planetary and Space Science, 2011, 59, 981-987.	1.7	9
67	Mineralogical characterization of some V-type asteroids, in support of the NASAâ€,Dawnâ€,missionâ~ Monthly Notices of the Royal Astronomical Society, 2011, 412, 2318-2332.	4.4	30
68	Spectroscopic survey of M-type asteroidsã^†. Icarus, 2010, 210, 655-673.	2.5	60
69	Investigation of oxygen O2(a1î" g) emission on the nightside of Venus: Nadir data of the VIRTIS-M experiment of the Venus Express mission. Cosmic Research, 2010, 48, 232-239.	0.6	7
70	Reflectance spectra of Titan tholin between 7000 and 10 cm ⁻¹ . Astronomy and Astrophysics, 2010, 516, A92.	5.1	8
71	Thermal structure of Venusian nighttime mesosphere as observed by VIRTISâ€Venus Express. Journal of Geophysical Research, 2010, 115, .	3.3	41
72	Nearâ€IR oxygen nightglow observed by VIRTIS in the Venus upper atmosphere. Journal of Geophysical Research, 2009, 114, .	3.3	74

#	Article	IF	CITATIONS
73	Visible and near infrared spectroscopic investigation of E-type asteroids, including 2867 Steins, a target of the Rosetta missionâ~†. Icarus, 2008, 196, 119-134.	2.5	42
74	Retrieval of air temperature profiles in the Venusian mesosphere from VIRTISâ€M data: Description and validation of algorithms. Journal of Geophysical Research, 2008, 113, .	3.3	32
75	Morphology and dynamics of Venus oxygen airglow from Venus Express/Visible and Infrared Thermal Imaging Spectrometer observations. Journal of Geophysical Research, 2008, 113, .	3.3	52
76	Cyclostrophic winds from the Visible and Infrared Thermal Imaging Spectrometer temperature sounding: A preliminary analysis. Journal of Geophysical Research, 2008, 113, .	3.3	33
77	First detection of hydroxyl in the atmosphere of Venus. Astronomy and Astrophysics, 2008, 483, L29-L33.	5.1	86
78	Constraining the surface properties of Saturn's icy moons, using Cassini/CIRS emissivity spectra. Icarus, 2007, 187, 574-583.	2.5	17
79	Are the E-type asteroids (2867) Steins, a target of the Rosetta mission, and NEA (3103) Eger remnants of an old asteroid family?. Astronomy and Astrophysics, 2007, 474, L29-L32.	5.1	19
80	A search of outer Trojans on ASTROVIRTEL images. Planetary and Space Science, 2005, 53, 643-651.	1.7	1
81	Analysis of near-IR spectra of 1 Ceres and 4 Vesta, targets of the Dawn mission. Astronomy and Astrophysics, 2005, 436, 1113-1121.	5.1	89
82	and seasonal variability. Monthly Notices of the Royal Astronomical Society, 0, , stw3177.	4.4	10
83	Cometary science with CUBES. Experimental Astronomy, 0, , 1.	3.7	3
84	Comets beyond 4 au: How pristine are Oort nuclei?. Monthly Notices of the Royal Astronomical Society, 0, , .	4.4	2